{"title":"具有相反类型的类型论:一种准一致类型论","authors":"J. C. Agudelo, Andrés Sicard-Ramírez","doi":"10.1093/JIGPAL/JZAB022","DOIUrl":null,"url":null,"abstract":"\n A version of intuitionistic type theory is extended with opposite types, allowing a different formalization of negation and obtaining a paraconsistent type theory ($\\textsf{PTT} $). The rules for opposite types in $\\textsf{PTT} $ are based on the rules of the so-called constructible falsity. A propositions-as-types correspondence between the many-sorted paraconsistent logic $\\textsf{PL}_\\textsf{S} $ (a many-sorted extension of López-Escobar’s refutability calculus presented in natural deduction format) and $\\textsf{PTT} $ is proven. Moreover, a translation of $\\textsf{PTT} $ into intuitionistic type theory is presented and some properties of $\\textsf{PTT} $ are discussed.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"1 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Type Theory with Opposite Types: A Paraconsistent Type Theory\",\"authors\":\"J. C. Agudelo, Andrés Sicard-Ramírez\",\"doi\":\"10.1093/JIGPAL/JZAB022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A version of intuitionistic type theory is extended with opposite types, allowing a different formalization of negation and obtaining a paraconsistent type theory ($\\\\textsf{PTT} $). The rules for opposite types in $\\\\textsf{PTT} $ are based on the rules of the so-called constructible falsity. A propositions-as-types correspondence between the many-sorted paraconsistent logic $\\\\textsf{PL}_\\\\textsf{S} $ (a many-sorted extension of López-Escobar’s refutability calculus presented in natural deduction format) and $\\\\textsf{PTT} $ is proven. Moreover, a translation of $\\\\textsf{PTT} $ into intuitionistic type theory is presented and some properties of $\\\\textsf{PTT} $ are discussed.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"1 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/JIGPAL/JZAB022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZAB022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Type Theory with Opposite Types: A Paraconsistent Type Theory
A version of intuitionistic type theory is extended with opposite types, allowing a different formalization of negation and obtaining a paraconsistent type theory ($\textsf{PTT} $). The rules for opposite types in $\textsf{PTT} $ are based on the rules of the so-called constructible falsity. A propositions-as-types correspondence between the many-sorted paraconsistent logic $\textsf{PL}_\textsf{S} $ (a many-sorted extension of López-Escobar’s refutability calculus presented in natural deduction format) and $\textsf{PTT} $ is proven. Moreover, a translation of $\textsf{PTT} $ into intuitionistic type theory is presented and some properties of $\textsf{PTT} $ are discussed.