实际网格环境下基于rl的调度策略

B. F. Costa, I. Dutra, M. Mattoso
{"title":"实际网格环境下基于rl的调度策略","authors":"B. F. Costa, I. Dutra, M. Mattoso","doi":"10.1109/ISPA.2008.119","DOIUrl":null,"url":null,"abstract":"In this work, we study the behaviour of different resource scheduling strategies when doing job orchestration in grid environments. We empirically demonstrate that scheduling strategies based on reinforcement learning are a good choice to improve the overall performance of grid applications and resource utilization.","PeriodicalId":345341,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing with Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RL-Based Scheduling Strategies in Actual Grid Environments\",\"authors\":\"B. F. Costa, I. Dutra, M. Mattoso\",\"doi\":\"10.1109/ISPA.2008.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the behaviour of different resource scheduling strategies when doing job orchestration in grid environments. We empirically demonstrate that scheduling strategies based on reinforcement learning are a good choice to improve the overall performance of grid applications and resource utilization.\",\"PeriodicalId\":345341,\"journal\":{\"name\":\"2008 IEEE International Symposium on Parallel and Distributed Processing with Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Parallel and Distributed Processing with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2008.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2008.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们研究了在网格环境中进行作业编排时不同资源调度策略的行为。我们的经验证明,基于强化学习的调度策略是一个很好的选择,以提高网格应用程序的整体性能和资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RL-Based Scheduling Strategies in Actual Grid Environments
In this work, we study the behaviour of different resource scheduling strategies when doing job orchestration in grid environments. We empirically demonstrate that scheduling strategies based on reinforcement learning are a good choice to improve the overall performance of grid applications and resource utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信