基于原始深度图的人类动作识别

Jacek Trelinski, B. Kwolek
{"title":"基于原始深度图的人类动作识别","authors":"Jacek Trelinski, B. Kwolek","doi":"10.1109/VCIP53242.2021.9675349","DOIUrl":null,"url":null,"abstract":"We propose an effective framework for human action recognition on raw depth maps. We leverage a convolutional autoencoder to extract on sequences of deep maps the frame-features that are then fed to a 1D-CNN responsible for embedding action features. A Siamese neural network trained on repre-sentative single depth map for each sequence extracts features, which are then processed by shapelets algorithm to extract action features. These features are then concatenated with features extracted by a BiLSTM with TimeDistributed wrapper. Given the learned individual models on such features we perform a selection of a subset of models. We demonstrate experimentally that on SYSU 3DHOI dataset the proposed algorithm outperforms considerably all recent algorithms including skeleton-based ones.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Human Action Recognition on Raw Depth Maps\",\"authors\":\"Jacek Trelinski, B. Kwolek\",\"doi\":\"10.1109/VCIP53242.2021.9675349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an effective framework for human action recognition on raw depth maps. We leverage a convolutional autoencoder to extract on sequences of deep maps the frame-features that are then fed to a 1D-CNN responsible for embedding action features. A Siamese neural network trained on repre-sentative single depth map for each sequence extracts features, which are then processed by shapelets algorithm to extract action features. These features are then concatenated with features extracted by a BiLSTM with TimeDistributed wrapper. Given the learned individual models on such features we perform a selection of a subset of models. We demonstrate experimentally that on SYSU 3DHOI dataset the proposed algorithm outperforms considerably all recent algorithms including skeleton-based ones.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个有效的基于原始深度图的人体动作识别框架。我们利用卷积自编码器在深度映射序列上提取帧特征,然后将其馈送到负责嵌入动作特征的1D-CNN。Siamese神经网络对每个序列的代表性单深度图进行训练,提取特征,然后通过shapelets算法对特征进行处理,提取动作特征。然后将这些特征与使用timedidistributed包装器的BiLSTM提取的特征连接起来。给定在这些特征上学习到的单个模型,我们执行模型子集的选择。实验证明,在SYSU 3DHOI数据集上,本文提出的算法大大优于所有最近的算法,包括基于骨架的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Action Recognition on Raw Depth Maps
We propose an effective framework for human action recognition on raw depth maps. We leverage a convolutional autoencoder to extract on sequences of deep maps the frame-features that are then fed to a 1D-CNN responsible for embedding action features. A Siamese neural network trained on repre-sentative single depth map for each sequence extracts features, which are then processed by shapelets algorithm to extract action features. These features are then concatenated with features extracted by a BiLSTM with TimeDistributed wrapper. Given the learned individual models on such features we perform a selection of a subset of models. We demonstrate experimentally that on SYSU 3DHOI dataset the proposed algorithm outperforms considerably all recent algorithms including skeleton-based ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信