二维电磁场狄拉克方程的高斯光束

V.V. Kuydin, M. Perel
{"title":"二维电磁场狄拉克方程的高斯光束","authors":"V.V. Kuydin, M. Perel","doi":"10.1109/DD46733.2019.9016614","DOIUrl":null,"url":null,"abstract":"Gaussian beams for the stationary 2D Dirac equation with inhomogeneous electric and magnetic fields are constructed. Gaussian beams (GB) are such asymptotic solutions of this equation that are exponentially localized near semiclassical trajectories. To derive formulas for the GB, we found the leading term of semiclassical asymptotic solutions of this equation by elementary methods. The results are given in such a form that can be applied to another vector problems.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gaussian beams for 2D Dirac equation with electromagnetic field\",\"authors\":\"V.V. Kuydin, M. Perel\",\"doi\":\"10.1109/DD46733.2019.9016614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian beams for the stationary 2D Dirac equation with inhomogeneous electric and magnetic fields are constructed. Gaussian beams (GB) are such asymptotic solutions of this equation that are exponentially localized near semiclassical trajectories. To derive formulas for the GB, we found the leading term of semiclassical asymptotic solutions of this equation by elementary methods. The results are given in such a form that can be applied to another vector problems.\",\"PeriodicalId\":319575,\"journal\":{\"name\":\"2019 Days on Diffraction (DD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD46733.2019.9016614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

构造了具有非均匀电场和磁场的二维狄拉克方程的高斯光束。高斯光束(GB)就是这个方程的渐近解,它在半经典轨迹附近呈指数定域。为了推导该方程的公式,我们用初等方法求出了该方程的半经典渐近解的首项。结果以可以应用于其他向量问题的形式给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian beams for 2D Dirac equation with electromagnetic field
Gaussian beams for the stationary 2D Dirac equation with inhomogeneous electric and magnetic fields are constructed. Gaussian beams (GB) are such asymptotic solutions of this equation that are exponentially localized near semiclassical trajectories. To derive formulas for the GB, we found the leading term of semiclassical asymptotic solutions of this equation by elementary methods. The results are given in such a form that can be applied to another vector problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信