利用超声波啁啾进行占用估计

Oliver Shih, Anthony G. Rowe
{"title":"利用超声波啁啾进行占用估计","authors":"Oliver Shih, Anthony G. Rowe","doi":"10.1145/2735960.2735969","DOIUrl":null,"url":null,"abstract":"Estimating the number of people within a room is important for a wide variety of applications including: HVAC load management, scheduling room allocations and guiding first responders to areas with trapped people. In this paper, we present an active sensing technique that uses changes in a room's acoustic properties to estimate the number of occupants. Frequency dependent models of reverberation and room capacity are often used when designing auditoriums and concert halls. We leverage this property by using measured changes in the ultrasonic spectrum reflected back from a wide-band transmitter to estimate occupancy. A centrally located beacon transmits an ultrasonic chirp and then records how the signal dissipates over time. By analyzing the frequency response over the chirp's bandwidth at a few known occupancy levels, we are able to extrapolate the response as the number of people in the room changes. We explore the design of an excitation signal that best senses the environment with the fewest number of training samples. Through experimentation, we show that our approach is able to capture the number of people in a wide-variety of room configurations with people counting accuracy below 10% of the maximum room capacity count with as few as two training points. Finally, we provide a simple mechanism that allows our system to recalibrate when we know the room is empty so that it can adapt dynamically over time.","PeriodicalId":344612,"journal":{"name":"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems","volume":"70 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Occupancy estimation using ultrasonic chirps\",\"authors\":\"Oliver Shih, Anthony G. Rowe\",\"doi\":\"10.1145/2735960.2735969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the number of people within a room is important for a wide variety of applications including: HVAC load management, scheduling room allocations and guiding first responders to areas with trapped people. In this paper, we present an active sensing technique that uses changes in a room's acoustic properties to estimate the number of occupants. Frequency dependent models of reverberation and room capacity are often used when designing auditoriums and concert halls. We leverage this property by using measured changes in the ultrasonic spectrum reflected back from a wide-band transmitter to estimate occupancy. A centrally located beacon transmits an ultrasonic chirp and then records how the signal dissipates over time. By analyzing the frequency response over the chirp's bandwidth at a few known occupancy levels, we are able to extrapolate the response as the number of people in the room changes. We explore the design of an excitation signal that best senses the environment with the fewest number of training samples. Through experimentation, we show that our approach is able to capture the number of people in a wide-variety of room configurations with people counting accuracy below 10% of the maximum room capacity count with as few as two training points. Finally, we provide a simple mechanism that allows our system to recalibrate when we know the room is empty so that it can adapt dynamically over time.\",\"PeriodicalId\":344612,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems\",\"volume\":\"70 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2735960.2735969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2735960.2735969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

估计房间内的人数对于各种应用都很重要,包括:暖通空调负荷管理,安排房间分配和指导急救人员到达被困人员区域。在本文中,我们提出了一种主动传感技术,该技术利用房间声学特性的变化来估计居住者的数量。在设计礼堂和音乐厅时,经常使用混响和房间容量的频率相关模型。我们利用这一特性,利用测量变化的超声波频谱反射回来从一个宽频带发射机估计占用。位于中心的信标发送超声波啁啾,然后记录信号随时间的消散情况。通过分析在几个已知占用水平下啁啾带宽上的频率响应,我们能够推断出房间中人数变化时的响应。我们探索了一种激励信号的设计,它可以用最少的训练样本来最好地感知环境。通过实验,我们表明我们的方法能够捕获各种房间配置中的人数,人数计数精度低于最大房间容量计数的10%,并且只有两个训练点。最后,我们提供了一个简单的机制,当我们知道房间是空的时,允许我们的系统重新校准,以便它可以随时间动态地适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occupancy estimation using ultrasonic chirps
Estimating the number of people within a room is important for a wide variety of applications including: HVAC load management, scheduling room allocations and guiding first responders to areas with trapped people. In this paper, we present an active sensing technique that uses changes in a room's acoustic properties to estimate the number of occupants. Frequency dependent models of reverberation and room capacity are often used when designing auditoriums and concert halls. We leverage this property by using measured changes in the ultrasonic spectrum reflected back from a wide-band transmitter to estimate occupancy. A centrally located beacon transmits an ultrasonic chirp and then records how the signal dissipates over time. By analyzing the frequency response over the chirp's bandwidth at a few known occupancy levels, we are able to extrapolate the response as the number of people in the room changes. We explore the design of an excitation signal that best senses the environment with the fewest number of training samples. Through experimentation, we show that our approach is able to capture the number of people in a wide-variety of room configurations with people counting accuracy below 10% of the maximum room capacity count with as few as two training points. Finally, we provide a simple mechanism that allows our system to recalibrate when we know the room is empty so that it can adapt dynamically over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信