基于超表面的物联网整流天线阵列新设计

T. Maruyama, M. Nakatsugawa, N. Suematsu, M. Motoyoshi, Qiang Chen, Hiroyasu Sato, M. Omiya
{"title":"基于超表面的物联网整流天线阵列新设计","authors":"T. Maruyama, M. Nakatsugawa, N. Suematsu, M. Motoyoshi, Qiang Chen, Hiroyasu Sato, M. Omiya","doi":"10.1109/apwc52648.2021.9539790","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel rectenna array using a metasurface to deliver electric power to IoT terminals by wireless power transfer. Each element that composes this rectenna array receives the electric power for IoT terminals like sensors from the wave source, and at the same time, it also acts as a director of the Yagi-Uda antenna and transmits the electric power to adjacent elements. However, the Yagi-Uda antenna generally has restrictions on the element spacing and shape, and the elements cannot be arranged freely. In order to address this issue, a metasurface is used as the reflector for the Yagi-Uda antenna to control the direction of the reflected wave and to propagate the electric power towards the element set at an arbitrary position. The wireless power transmission efficiency of each element of the proposed rectenna arrays was clarified using electromagnetic field analysis.","PeriodicalId":253455,"journal":{"name":"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Design of Rectenna Array Using Metasurface for IoT\",\"authors\":\"T. Maruyama, M. Nakatsugawa, N. Suematsu, M. Motoyoshi, Qiang Chen, Hiroyasu Sato, M. Omiya\",\"doi\":\"10.1109/apwc52648.2021.9539790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel rectenna array using a metasurface to deliver electric power to IoT terminals by wireless power transfer. Each element that composes this rectenna array receives the electric power for IoT terminals like sensors from the wave source, and at the same time, it also acts as a director of the Yagi-Uda antenna and transmits the electric power to adjacent elements. However, the Yagi-Uda antenna generally has restrictions on the element spacing and shape, and the elements cannot be arranged freely. In order to address this issue, a metasurface is used as the reflector for the Yagi-Uda antenna to control the direction of the reflected wave and to propagate the electric power towards the element set at an arbitrary position. The wireless power transmission efficiency of each element of the proposed rectenna arrays was clarified using electromagnetic field analysis.\",\"PeriodicalId\":253455,\"journal\":{\"name\":\"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/apwc52648.2021.9539790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/apwc52648.2021.9539790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种使用超表面的新型整流天线阵列,通过无线电力传输向物联网终端输送电力。组成该整流天线阵列的每个元件从波源接收传感器等物联网终端的电力,同时,它也充当Yagi-Uda天线的导演,并将电力传输到邻近的元件。然而,Yagi-Uda天线一般有元件间距和形状的限制,元件不能自由排列。为了解决这个问题,在Yagi-Uda天线中使用了一个超表面作为反射面来控制反射波的方向,并将电力传播到任意位置的元件。利用电磁场分析阐明了所提出的整流天线阵列各单元的无线功率传输效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Design of Rectenna Array Using Metasurface for IoT
This paper proposes a novel rectenna array using a metasurface to deliver electric power to IoT terminals by wireless power transfer. Each element that composes this rectenna array receives the electric power for IoT terminals like sensors from the wave source, and at the same time, it also acts as a director of the Yagi-Uda antenna and transmits the electric power to adjacent elements. However, the Yagi-Uda antenna generally has restrictions on the element spacing and shape, and the elements cannot be arranged freely. In order to address this issue, a metasurface is used as the reflector for the Yagi-Uda antenna to control the direction of the reflected wave and to propagate the electric power towards the element set at an arbitrary position. The wireless power transmission efficiency of each element of the proposed rectenna arrays was clarified using electromagnetic field analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信