A. Polonsky, А Б Полонский, A. Serebrennikov, Андрей Николаевич Серебренников
{"title":"本格拉上升流区海表温度的变化。第2部分:长期趋势","authors":"A. Polonsky, А Б Полонский, A. Serebrennikov, Андрей Николаевич Серебренников","doi":"10.31857/S0205-96142019429-39","DOIUrl":null,"url":null,"abstract":"The paper examines the issue on the long-term trends in the sea surface temperature (SST) in the Benguela upwelling zone and their causes using the daily SST satellite data for 1985–2017’s and the daily near-surface wind for 1988–2017”s. It is shown that in the Benguela upwelling region, there is a significant intensification of driving winds in the last 20 yrs. This is accompanied by a decrease of the thermal upwelling index (taking into account the sign of the index or an increase of its absolute values) in the southern part of the Benguela upwelling, but practically does not influence this indicator in its northern part. The likely reason for this difference is the change in the wind field structure, as a result of which there are opposite trends in the magnitude of the vorticity of the tangential wind stress in different parts of the Benguela upwelling. In the southern part of the Benguela upwelling, both the Ekman’s upwelling and the vertical velocities due to the vorticity of the driving wind intensify, while in the northern part the corresponding trends have the opposite signs. This leads to a partial compensation of these two effects in the northern part of the Benguela upwelling. The reason for the change in the wind field structure is the displacement of the center of the Subtropical High to the south-east and the concomitant reversal of the near-surface wind vector in the coastal zone.","PeriodicalId":388889,"journal":{"name":"Исследования Земли из космоса","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the changes in the sea surface temperature in the benguela upwelling region. Part 2: the long-term tendencies\",\"authors\":\"A. Polonsky, А Б Полонский, A. Serebrennikov, Андрей Николаевич Серебренников\",\"doi\":\"10.31857/S0205-96142019429-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper examines the issue on the long-term trends in the sea surface temperature (SST) in the Benguela upwelling zone and their causes using the daily SST satellite data for 1985–2017’s and the daily near-surface wind for 1988–2017”s. It is shown that in the Benguela upwelling region, there is a significant intensification of driving winds in the last 20 yrs. This is accompanied by a decrease of the thermal upwelling index (taking into account the sign of the index or an increase of its absolute values) in the southern part of the Benguela upwelling, but practically does not influence this indicator in its northern part. The likely reason for this difference is the change in the wind field structure, as a result of which there are opposite trends in the magnitude of the vorticity of the tangential wind stress in different parts of the Benguela upwelling. In the southern part of the Benguela upwelling, both the Ekman’s upwelling and the vertical velocities due to the vorticity of the driving wind intensify, while in the northern part the corresponding trends have the opposite signs. This leads to a partial compensation of these two effects in the northern part of the Benguela upwelling. The reason for the change in the wind field structure is the displacement of the center of the Subtropical High to the south-east and the concomitant reversal of the near-surface wind vector in the coastal zone.\",\"PeriodicalId\":388889,\"journal\":{\"name\":\"Исследования Земли из космоса\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Исследования Земли из космоса\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/S0205-96142019429-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Исследования Земли из космоса","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0205-96142019429-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the changes in the sea surface temperature in the benguela upwelling region. Part 2: the long-term tendencies
The paper examines the issue on the long-term trends in the sea surface temperature (SST) in the Benguela upwelling zone and their causes using the daily SST satellite data for 1985–2017’s and the daily near-surface wind for 1988–2017”s. It is shown that in the Benguela upwelling region, there is a significant intensification of driving winds in the last 20 yrs. This is accompanied by a decrease of the thermal upwelling index (taking into account the sign of the index or an increase of its absolute values) in the southern part of the Benguela upwelling, but practically does not influence this indicator in its northern part. The likely reason for this difference is the change in the wind field structure, as a result of which there are opposite trends in the magnitude of the vorticity of the tangential wind stress in different parts of the Benguela upwelling. In the southern part of the Benguela upwelling, both the Ekman’s upwelling and the vertical velocities due to the vorticity of the driving wind intensify, while in the northern part the corresponding trends have the opposite signs. This leads to a partial compensation of these two effects in the northern part of the Benguela upwelling. The reason for the change in the wind field structure is the displacement of the center of the Subtropical High to the south-east and the concomitant reversal of the near-surface wind vector in the coastal zone.