{"title":"用于无标签生化传感的集成中红外光子电路","authors":"P. Lin","doi":"10.1117/12.2227049","DOIUrl":null,"url":null,"abstract":"A chip-scale biochemical sensor was developed using mid-Infrared (mid-IR) transparent silicon nitride (SiN) optical waveguides. The label free detection was conducted at λ = 2.70 - 2.81 μm because these spectral regions overlap with the characteristic glucose absorption associated with O-H stretches. Strong intensity attenuation at λ > 2.73 μm was found for the SiN waveguide covered by glucose and a detection limit less than 0.5 ng was experimentally demonstrated. The observed high sensitivity is attributed to a long mid-IR - glucose interaction length owning to the waveguide geometry and an increased sensing surface from the pedestal structure.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"136 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrated mid-infrared photonic circuits for label-free biochemical sensing\",\"authors\":\"P. Lin\",\"doi\":\"10.1117/12.2227049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A chip-scale biochemical sensor was developed using mid-Infrared (mid-IR) transparent silicon nitride (SiN) optical waveguides. The label free detection was conducted at λ = 2.70 - 2.81 μm because these spectral regions overlap with the characteristic glucose absorption associated with O-H stretches. Strong intensity attenuation at λ > 2.73 μm was found for the SiN waveguide covered by glucose and a detection limit less than 0.5 ng was experimentally demonstrated. The observed high sensitivity is attributed to a long mid-IR - glucose interaction length owning to the waveguide geometry and an increased sensing surface from the pedestal structure.\",\"PeriodicalId\":222501,\"journal\":{\"name\":\"SPIE Defense + Security\",\"volume\":\"136 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Defense + Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2227049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2227049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated mid-infrared photonic circuits for label-free biochemical sensing
A chip-scale biochemical sensor was developed using mid-Infrared (mid-IR) transparent silicon nitride (SiN) optical waveguides. The label free detection was conducted at λ = 2.70 - 2.81 μm because these spectral regions overlap with the characteristic glucose absorption associated with O-H stretches. Strong intensity attenuation at λ > 2.73 μm was found for the SiN waveguide covered by glucose and a detection limit less than 0.5 ng was experimentally demonstrated. The observed high sensitivity is attributed to a long mid-IR - glucose interaction length owning to the waveguide geometry and an increased sensing surface from the pedestal structure.