{"title":"单片电流型CMOS DC-DC变换器动态宽度控制器的节能研究","authors":"Hung-Ch Lee, Kuo-Tai Chang, Ke-Horng Chen, Wen Tsao Chen","doi":"10.1109/IWSOC.2005.93","DOIUrl":null,"url":null,"abstract":"We propose the dynamic power MOS width controlling technique and the adaptive gate driver voltage technique to find out the better approach to power saving in DC-DC converters. It demonstrates that the dynamic power MOS width controlling technique has much improvement in power consumption than that of the adaptive gate driver voltage technique when the load current is heavy or light. After the dynamic power MOS width modification, the simulation results show that the efficiency of current-mode DC-DC buck converter can be improved from 92% to about 98% in heavy load and from 15% to about 16.3% in light load. However, the adaptive gate driver voltage technique has only little improvement of power saving. It means that the dynamic width controller is the better approach to power saving in the DC-DC converter.","PeriodicalId":328550,"journal":{"name":"Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Power saving of a dynamic width controller for a monolithic current-mode CMOS DC-DC converter\",\"authors\":\"Hung-Ch Lee, Kuo-Tai Chang, Ke-Horng Chen, Wen Tsao Chen\",\"doi\":\"10.1109/IWSOC.2005.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the dynamic power MOS width controlling technique and the adaptive gate driver voltage technique to find out the better approach to power saving in DC-DC converters. It demonstrates that the dynamic power MOS width controlling technique has much improvement in power consumption than that of the adaptive gate driver voltage technique when the load current is heavy or light. After the dynamic power MOS width modification, the simulation results show that the efficiency of current-mode DC-DC buck converter can be improved from 92% to about 98% in heavy load and from 15% to about 16.3% in light load. However, the adaptive gate driver voltage technique has only little improvement of power saving. It means that the dynamic width controller is the better approach to power saving in the DC-DC converter.\",\"PeriodicalId\":328550,\"journal\":{\"name\":\"Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSOC.2005.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSOC.2005.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power saving of a dynamic width controller for a monolithic current-mode CMOS DC-DC converter
We propose the dynamic power MOS width controlling technique and the adaptive gate driver voltage technique to find out the better approach to power saving in DC-DC converters. It demonstrates that the dynamic power MOS width controlling technique has much improvement in power consumption than that of the adaptive gate driver voltage technique when the load current is heavy or light. After the dynamic power MOS width modification, the simulation results show that the efficiency of current-mode DC-DC buck converter can be improved from 92% to about 98% in heavy load and from 15% to about 16.3% in light load. However, the adaptive gate driver voltage technique has only little improvement of power saving. It means that the dynamic width controller is the better approach to power saving in the DC-DC converter.