基于振动的损伤识别方法综述

S. Doebling, C. Farrar, M. Prime
{"title":"基于振动的损伤识别方法综述","authors":"S. Doebling, C. Farrar, M. Prime","doi":"10.1177/058310249803000201","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of methods to detect, locate, and characterize damage in structural and mechanical systems by examining changes in measured vibration response. Research in vibration-based damage identification has been rapidly expanding over the last few years. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is presented. The methods are categorized according to various criteria such as the level of damage detection provided, model-based versus non-model-based methods, and linear versus nonlinear methods. The methods are also described in general terms including difficulties associated with their implementation and their fidelity. Past, current, and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of vibration-based damage identification.","PeriodicalId":405331,"journal":{"name":"The Shock and Vibration Digest","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2891","resultStr":"{\"title\":\"A summary review of vibration-based damage identification methods\",\"authors\":\"S. Doebling, C. Farrar, M. Prime\",\"doi\":\"10.1177/058310249803000201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an overview of methods to detect, locate, and characterize damage in structural and mechanical systems by examining changes in measured vibration response. Research in vibration-based damage identification has been rapidly expanding over the last few years. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is presented. The methods are categorized according to various criteria such as the level of damage detection provided, model-based versus non-model-based methods, and linear versus nonlinear methods. The methods are also described in general terms including difficulties associated with their implementation and their fidelity. Past, current, and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of vibration-based damage identification.\",\"PeriodicalId\":405331,\"journal\":{\"name\":\"The Shock and Vibration Digest\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2891\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Shock and Vibration Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/058310249803000201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Shock and Vibration Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/058310249803000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2891

摘要

本文概述了通过检测测量振动响应的变化来检测、定位和表征结构和机械系统损伤的方法。在过去的几年里,基于振动的损伤识别研究得到了迅速的发展。该技术背后的基本思想是,模态参数(特别是频率、模态振型和模态阻尼)是结构物理特性(质量、阻尼和刚度)的函数。因此,物理性质的变化将引起模态性质的可检测变化。提出了该技术发展的动机。这些方法根据不同的标准进行分类,如所提供的损伤检测水平、基于模型的方法与非基于模型的方法、线性方法与非线性方法。还概括地描述了这些方法,包括与它们的实施及其保真度有关的困难。总结了该技术在实际工程系统中的过去、现在和未来计划的应用。最后,对基于振动的损伤识别领域未来研究的关键问题进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A summary review of vibration-based damage identification methods
This paper provides an overview of methods to detect, locate, and characterize damage in structural and mechanical systems by examining changes in measured vibration response. Research in vibration-based damage identification has been rapidly expanding over the last few years. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is presented. The methods are categorized according to various criteria such as the level of damage detection provided, model-based versus non-model-based methods, and linear versus nonlinear methods. The methods are also described in general terms including difficulties associated with their implementation and their fidelity. Past, current, and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of vibration-based damage identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信