雾事件预测数据挖掘模型的可移植性分析

G. Zazzaro
{"title":"雾事件预测数据挖掘模型的可移植性分析","authors":"G. Zazzaro","doi":"10.1002/sam.11568","DOIUrl":null,"url":null,"abstract":"This article describes an analytical method for comparing geographical sites and transferring fog forecasting models, trained by Data Mining techniques on a fixed site, across Italian airports. This portability method uses a specific intersite similarity measure based on the Euclidean distance between the performance vectors associated with each airport site. Performance vectors are useful for characterizing geographical sites. The components of a performance vector are the performance metrics of an Ensemble descriptive model. In the tests carried out, the comparison method provided very promising results, and the forecast model, when applied and evaluated on a new compatible site, shows only a small decrease in performance. The portability schema provides a meta‐learning methodology for applying predictive models to new sites where a new model cannot be trained from scratch owing to the class imbalance problem or the lack of data for a specific learning. The methodology offers a measure for clustering geographical sites and extending weather knowledge from one site to another.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portability analysis of data mining models for fog events forecasting\",\"authors\":\"G. Zazzaro\",\"doi\":\"10.1002/sam.11568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes an analytical method for comparing geographical sites and transferring fog forecasting models, trained by Data Mining techniques on a fixed site, across Italian airports. This portability method uses a specific intersite similarity measure based on the Euclidean distance between the performance vectors associated with each airport site. Performance vectors are useful for characterizing geographical sites. The components of a performance vector are the performance metrics of an Ensemble descriptive model. In the tests carried out, the comparison method provided very promising results, and the forecast model, when applied and evaluated on a new compatible site, shows only a small decrease in performance. The portability schema provides a meta‐learning methodology for applying predictive models to new sites where a new model cannot be trained from scratch owing to the class imbalance problem or the lack of data for a specific learning. The methodology offers a measure for clustering geographical sites and extending weather knowledge from one site to another.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种比较地理位置和传输雾预报模型的分析方法,该方法由数据挖掘技术在固定地点训练,横跨意大利机场。这种可移植性方法使用基于与每个机场站点相关的性能向量之间的欧几里得距离的特定站点间相似性度量。性能矢量对于描述地理站点很有用。性能向量的组件是集成描述性模型的性能度量。在进行的测试中,对比方法提供了非常有希望的结果,并且当在新的兼容站点上应用和评估预测模型时,仅显示性能略有下降。可移植性模式提供了一种元学习方法,用于将预测模型应用于由于类不平衡问题或缺乏特定学习数据而无法从头开始训练新模型的新站点。该方法提供了一种聚类地理站点和将天气知识从一个站点扩展到另一个站点的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portability analysis of data mining models for fog events forecasting
This article describes an analytical method for comparing geographical sites and transferring fog forecasting models, trained by Data Mining techniques on a fixed site, across Italian airports. This portability method uses a specific intersite similarity measure based on the Euclidean distance between the performance vectors associated with each airport site. Performance vectors are useful for characterizing geographical sites. The components of a performance vector are the performance metrics of an Ensemble descriptive model. In the tests carried out, the comparison method provided very promising results, and the forecast model, when applied and evaluated on a new compatible site, shows only a small decrease in performance. The portability schema provides a meta‐learning methodology for applying predictive models to new sites where a new model cannot be trained from scratch owing to the class imbalance problem or the lack of data for a specific learning. The methodology offers a measure for clustering geographical sites and extending weather knowledge from one site to another.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信