基于空间尺度的运动去模糊模糊核估计

Shu Tang, Xianzhong Xie, Xiao Luan, M. Xia, Peisong Liu
{"title":"基于空间尺度的运动去模糊模糊核估计","authors":"Shu Tang, Xianzhong Xie, Xiao Luan, M. Xia, Peisong Liu","doi":"10.1109/SPAC.2017.8304286","DOIUrl":null,"url":null,"abstract":"Maximum a posteriori (MAP)-based single-image blind motion deblurring methods are extensively studied in the past years, and have achieved great progress. However, because of imperfect salient edges selection, most state-of-the-art methods still cannot estimate the blur kernel (BK) accurately, especially in large motion blur cases. In this paper, we propose a novel spatial-scale-based approach to estimate an accurate BK from a single motion blurred image by combining the spatial scale and L0 norm. Furthermore, we propose an efficient optimization strategy which can solve the proposed model efficiently. Extensive experiments compared with state-of-the-art blind motion deblurring methods demonstrate the effectiveness of our method.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial-scale-based blur kernel estimation for blind motion deblurring\",\"authors\":\"Shu Tang, Xianzhong Xie, Xiao Luan, M. Xia, Peisong Liu\",\"doi\":\"10.1109/SPAC.2017.8304286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum a posteriori (MAP)-based single-image blind motion deblurring methods are extensively studied in the past years, and have achieved great progress. However, because of imperfect salient edges selection, most state-of-the-art methods still cannot estimate the blur kernel (BK) accurately, especially in large motion blur cases. In this paper, we propose a novel spatial-scale-based approach to estimate an accurate BK from a single motion blurred image by combining the spatial scale and L0 norm. Furthermore, we propose an efficient optimization strategy which can solve the proposed model efficiently. Extensive experiments compared with state-of-the-art blind motion deblurring methods demonstrate the effectiveness of our method.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于最大后验(MAP)的单幅图像盲运动去模糊方法近年来得到了广泛的研究,并取得了很大的进展。然而,由于显著边缘选择的不完善,大多数最先进的方法仍然不能准确地估计模糊核(BK),特别是在大型运动模糊情况下。本文提出了一种新的基于空间尺度的方法,结合空间尺度和L0范数从单个运动模糊图像中估计精确的BK。此外,我们还提出了一种有效的优化策略,可以有效地求解所提出的模型。大量的实验与目前最先进的盲运动去模糊方法进行了比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-scale-based blur kernel estimation for blind motion deblurring
Maximum a posteriori (MAP)-based single-image blind motion deblurring methods are extensively studied in the past years, and have achieved great progress. However, because of imperfect salient edges selection, most state-of-the-art methods still cannot estimate the blur kernel (BK) accurately, especially in large motion blur cases. In this paper, we propose a novel spatial-scale-based approach to estimate an accurate BK from a single motion blurred image by combining the spatial scale and L0 norm. Furthermore, we propose an efficient optimization strategy which can solve the proposed model efficiently. Extensive experiments compared with state-of-the-art blind motion deblurring methods demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信