{"title":"基于离散总变分的非局部均值滤波去噪磁共振图像","authors":"N. Joshi, Sarika Jain, Amit Agarwal","doi":"10.4018/jitr.2020100102","DOIUrl":null,"url":null,"abstract":"Magnetic resonance (MR) images suffer from noise introduced by various sources. Due to this noise, diagnosis remains inaccurate. Thus, removal of noise becomes a very important task when dealing with MR images. In this paper, a denoising method has been discussed that makes use of non-local means filter and discrete total variation method. The proposed approach has been compared with other noise removal techniques like non-local means filter, anisotropic diffusion, total variation, and discrete total variation method, and it proves to be effective in reducing noise. The performance of various denoising methods is compared on basis of metrics such as peak signal-to-noise ratio (PSNR), mean square error (MSE), universal image quality index (UQI), and structure similarity index (SSIM) values. This method has been tested for various noise levels, and it outperformed other existing noise removal techniques, without blurring the image.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discrete Total Variation-Based Non-Local Means Filter for Denoising Magnetic Resonance Images\",\"authors\":\"N. Joshi, Sarika Jain, Amit Agarwal\",\"doi\":\"10.4018/jitr.2020100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance (MR) images suffer from noise introduced by various sources. Due to this noise, diagnosis remains inaccurate. Thus, removal of noise becomes a very important task when dealing with MR images. In this paper, a denoising method has been discussed that makes use of non-local means filter and discrete total variation method. The proposed approach has been compared with other noise removal techniques like non-local means filter, anisotropic diffusion, total variation, and discrete total variation method, and it proves to be effective in reducing noise. The performance of various denoising methods is compared on basis of metrics such as peak signal-to-noise ratio (PSNR), mean square error (MSE), universal image quality index (UQI), and structure similarity index (SSIM) values. This method has been tested for various noise levels, and it outperformed other existing noise removal techniques, without blurring the image.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.2020100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.2020100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete Total Variation-Based Non-Local Means Filter for Denoising Magnetic Resonance Images
Magnetic resonance (MR) images suffer from noise introduced by various sources. Due to this noise, diagnosis remains inaccurate. Thus, removal of noise becomes a very important task when dealing with MR images. In this paper, a denoising method has been discussed that makes use of non-local means filter and discrete total variation method. The proposed approach has been compared with other noise removal techniques like non-local means filter, anisotropic diffusion, total variation, and discrete total variation method, and it proves to be effective in reducing noise. The performance of various denoising methods is compared on basis of metrics such as peak signal-to-noise ratio (PSNR), mean square error (MSE), universal image quality index (UQI), and structure similarity index (SSIM) values. This method has been tested for various noise levels, and it outperformed other existing noise removal techniques, without blurring the image.