利用混合融合技术检测欺诈交易

Yashowardhan Shinde, Akalbir Singh Chadha, Ajitkumar Shitole
{"title":"利用混合融合技术检测欺诈交易","authors":"Yashowardhan Shinde, Akalbir Singh Chadha, Ajitkumar Shitole","doi":"10.1109/ICECIE52348.2021.9664719","DOIUrl":null,"url":null,"abstract":"Fraud is one of the most extensive ethical issues in the Financial (Banking) industry. The research aims to create a robust model for predicting fraudulent transactions based on the transactions made by the consumer in the past and present, compare as well as analyse different algorithms that best suit our needs. This paper also focuses on handling the imbalance in the datasets as well as creating a Machine Learning model with high Accuracy, F1-score, AUC, Precision as well as Recall which is achieved using a fusion method in which models are selected from the tested classifiers like Logistic Regression, XGBoost, Random Forest Classifier, Fusion Model, Gaussian NB, and SGDClassifier. Only the models with values of every metric above a certain threshold are selected to churn out maximum performance from the model. The model proposed in this paper uses a probability-based weighted average function for the prediction of fraudulent transactions which yielded a 99% score over all the considered metrics.","PeriodicalId":309754,"journal":{"name":"2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting Fraudulent Transactions using Hybrid Fusion Techniques\",\"authors\":\"Yashowardhan Shinde, Akalbir Singh Chadha, Ajitkumar Shitole\",\"doi\":\"10.1109/ICECIE52348.2021.9664719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fraud is one of the most extensive ethical issues in the Financial (Banking) industry. The research aims to create a robust model for predicting fraudulent transactions based on the transactions made by the consumer in the past and present, compare as well as analyse different algorithms that best suit our needs. This paper also focuses on handling the imbalance in the datasets as well as creating a Machine Learning model with high Accuracy, F1-score, AUC, Precision as well as Recall which is achieved using a fusion method in which models are selected from the tested classifiers like Logistic Regression, XGBoost, Random Forest Classifier, Fusion Model, Gaussian NB, and SGDClassifier. Only the models with values of every metric above a certain threshold are selected to churn out maximum performance from the model. The model proposed in this paper uses a probability-based weighted average function for the prediction of fraudulent transactions which yielded a 99% score over all the considered metrics.\",\"PeriodicalId\":309754,\"journal\":{\"name\":\"2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECIE52348.2021.9664719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECIE52348.2021.9664719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

欺诈是金融(银行)行业最广泛的道德问题之一。这项研究的目的是根据消费者过去和现在的交易情况,建立一个强大的模型来预测欺诈交易,比较和分析最适合我们需求的不同算法。本文还侧重于处理数据集中的不平衡,以及使用融合方法创建具有高精度,f1分数,AUC,精度和召回率的机器学习模型,该方法从测试过的分类器中选择模型,如逻辑回归,XGBoost,随机森林分类器,融合模型,高斯NB和SGDClassifier。只有每个指标的值都高于某个阈值的模型才会被选中,以便从模型中获得最大的性能。本文提出的模型使用基于概率的加权平均函数来预测欺诈交易,该函数在所有考虑的指标中获得99%的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Fraudulent Transactions using Hybrid Fusion Techniques
Fraud is one of the most extensive ethical issues in the Financial (Banking) industry. The research aims to create a robust model for predicting fraudulent transactions based on the transactions made by the consumer in the past and present, compare as well as analyse different algorithms that best suit our needs. This paper also focuses on handling the imbalance in the datasets as well as creating a Machine Learning model with high Accuracy, F1-score, AUC, Precision as well as Recall which is achieved using a fusion method in which models are selected from the tested classifiers like Logistic Regression, XGBoost, Random Forest Classifier, Fusion Model, Gaussian NB, and SGDClassifier. Only the models with values of every metric above a certain threshold are selected to churn out maximum performance from the model. The model proposed in this paper uses a probability-based weighted average function for the prediction of fraudulent transactions which yielded a 99% score over all the considered metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信