提高铁路自优化导向系统的可靠性

Christoph Sondermann-Wolke, J. Geisler, W. Sextro
{"title":"提高铁路自优化导向系统的可靠性","authors":"Christoph Sondermann-Wolke, J. Geisler, W. Sextro","doi":"10.1109/RAMS.2010.5448080","DOIUrl":null,"url":null,"abstract":"Recent advances in information processing enable new kinds of technical systems, called self-optimizing systems. These systems are able to adapt their objectives and their behavior according to the current situation and influences autonomously. This behavior adaptation is non-deterministic and hence self-optimization is a risk to the system, e.g. if the result of the self-optimization process does not match the suddenly changed situation. In contrary, self-optimization could be used to increase the dependability by pursuing objectives like reliability and availability. In our preceding publications we introduced the so called multi-level dependability concept to cope with this new kind of systems (cf. [6]). This concept comprises the monitoring of the system behavior, the classification of the current situation, and the selection of the appropriate measure, if reliability limits are exceeded. In this paper we present for the first time experimental results. The dependability concept is implemented in the self-optimizing active guidance system of a railway vehicle. The test drives illustrate clearly that the proposed concept is able to cope with, e.g., sensor failures, and is able to increase the reliability and availability of the active guidance module.","PeriodicalId":299782,"journal":{"name":"2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Increasing the reliability of a self-optimizing railway guidance system\",\"authors\":\"Christoph Sondermann-Wolke, J. Geisler, W. Sextro\",\"doi\":\"10.1109/RAMS.2010.5448080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in information processing enable new kinds of technical systems, called self-optimizing systems. These systems are able to adapt their objectives and their behavior according to the current situation and influences autonomously. This behavior adaptation is non-deterministic and hence self-optimization is a risk to the system, e.g. if the result of the self-optimization process does not match the suddenly changed situation. In contrary, self-optimization could be used to increase the dependability by pursuing objectives like reliability and availability. In our preceding publications we introduced the so called multi-level dependability concept to cope with this new kind of systems (cf. [6]). This concept comprises the monitoring of the system behavior, the classification of the current situation, and the selection of the appropriate measure, if reliability limits are exceeded. In this paper we present for the first time experimental results. The dependability concept is implemented in the self-optimizing active guidance system of a railway vehicle. The test drives illustrate clearly that the proposed concept is able to cope with, e.g., sensor failures, and is able to increase the reliability and availability of the active guidance module.\",\"PeriodicalId\":299782,\"journal\":{\"name\":\"2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.2010.5448080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2010.5448080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

信息处理的最新进展使新的技术系统成为可能,称为自优化系统。这些系统能够根据当前情况和影响自主地调整其目标和行为。这种行为适应是不确定的,因此自优化对系统来说是一种风险,例如,如果自优化过程的结果与突然变化的情况不匹配。相反,自我优化可以通过追求可靠性和可用性等目标来提高可靠性。在我们之前的出版物中,我们引入了所谓的多层次可靠性概念来应对这种新型系统(参见[6])。这个概念包括对系统行为的监视,对当前情况的分类,以及在超出可靠性限制时选择适当的措施。本文首次给出了实验结果。将可靠性概念应用于轨道车辆自优化主动制导系统中。测试驱动清楚地表明,所提出的概念能够应对传感器故障,并能够提高主动制导模块的可靠性和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing the reliability of a self-optimizing railway guidance system
Recent advances in information processing enable new kinds of technical systems, called self-optimizing systems. These systems are able to adapt their objectives and their behavior according to the current situation and influences autonomously. This behavior adaptation is non-deterministic and hence self-optimization is a risk to the system, e.g. if the result of the self-optimization process does not match the suddenly changed situation. In contrary, self-optimization could be used to increase the dependability by pursuing objectives like reliability and availability. In our preceding publications we introduced the so called multi-level dependability concept to cope with this new kind of systems (cf. [6]). This concept comprises the monitoring of the system behavior, the classification of the current situation, and the selection of the appropriate measure, if reliability limits are exceeded. In this paper we present for the first time experimental results. The dependability concept is implemented in the self-optimizing active guidance system of a railway vehicle. The test drives illustrate clearly that the proposed concept is able to cope with, e.g., sensor failures, and is able to increase the reliability and availability of the active guidance module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信