提高AlphaZero实力的两阶段双赢策略

Chih-Hung Chen, Yen-Chi Chen, Shun-Shii Lin
{"title":"提高AlphaZero实力的两阶段双赢策略","authors":"Chih-Hung Chen, Yen-Chi Chen, Shun-Shii Lin","doi":"10.1109/WSCE49000.2019.9041112","DOIUrl":null,"url":null,"abstract":"AlphaZero used a combination of Monte-Carlo Tree Search as well as deep neural networks that learned without human knowledge. It demonstrated that reinforcement learning by self-play could surpass the human champions. The great success of AlphaZero seems that every AI tasks can be trained and learned without any human knowledge as well as any human heuristics. But this paper presents another viewpoint: the AlphaZero approach is good at the perspective of overall situations, and miniMax search (with alpha-beta pruning) is adept in discovering partial solutions. Therefore, we introduce the Two-Phase-Win strategy to combine AlphaZero and miniMax search with alpha-beta pruning for improving AlphaZero’s strength. It has improved the strength of the AlphaZero approach applied to Connect4. The results of experiments show that the Two-Phase-Win strategy has 58% win rate against the AlphaZero approach and doesn’t lose any game in a 100-game match.","PeriodicalId":153298,"journal":{"name":"2019 2nd World Symposium on Communication Engineering (WSCE)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Phase-Win Strategy for Improving the AlphaZero’s Strength\",\"authors\":\"Chih-Hung Chen, Yen-Chi Chen, Shun-Shii Lin\",\"doi\":\"10.1109/WSCE49000.2019.9041112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AlphaZero used a combination of Monte-Carlo Tree Search as well as deep neural networks that learned without human knowledge. It demonstrated that reinforcement learning by self-play could surpass the human champions. The great success of AlphaZero seems that every AI tasks can be trained and learned without any human knowledge as well as any human heuristics. But this paper presents another viewpoint: the AlphaZero approach is good at the perspective of overall situations, and miniMax search (with alpha-beta pruning) is adept in discovering partial solutions. Therefore, we introduce the Two-Phase-Win strategy to combine AlphaZero and miniMax search with alpha-beta pruning for improving AlphaZero’s strength. It has improved the strength of the AlphaZero approach applied to Connect4. The results of experiments show that the Two-Phase-Win strategy has 58% win rate against the AlphaZero approach and doesn’t lose any game in a 100-game match.\",\"PeriodicalId\":153298,\"journal\":{\"name\":\"2019 2nd World Symposium on Communication Engineering (WSCE)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd World Symposium on Communication Engineering (WSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSCE49000.2019.9041112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd World Symposium on Communication Engineering (WSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCE49000.2019.9041112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AlphaZero结合了蒙特卡罗树搜索和深度神经网络,在没有人类知识的情况下进行学习。它证明了通过自我游戏的强化学习可以超越人类冠军。AlphaZero的巨大成功似乎表明,每个人工智能任务都可以在没有任何人类知识和任何人类启发式的情况下进行训练和学习。但本文提出了另一种观点:AlphaZero方法擅长全局视角,miniMax搜索(带有alpha-beta修剪)擅长发现部分解。因此,我们引入两阶段获胜策略,将AlphaZero和miniMax搜索与alpha-beta修剪相结合,以提高AlphaZero的强度。它提高了应用于Connect4的AlphaZero方法的强度。实验结果表明,两阶段获胜策略对AlphaZero方法的胜率为58%,并且在100局比赛中没有输掉任何一局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Phase-Win Strategy for Improving the AlphaZero’s Strength
AlphaZero used a combination of Monte-Carlo Tree Search as well as deep neural networks that learned without human knowledge. It demonstrated that reinforcement learning by self-play could surpass the human champions. The great success of AlphaZero seems that every AI tasks can be trained and learned without any human knowledge as well as any human heuristics. But this paper presents another viewpoint: the AlphaZero approach is good at the perspective of overall situations, and miniMax search (with alpha-beta pruning) is adept in discovering partial solutions. Therefore, we introduce the Two-Phase-Win strategy to combine AlphaZero and miniMax search with alpha-beta pruning for improving AlphaZero’s strength. It has improved the strength of the AlphaZero approach applied to Connect4. The results of experiments show that the Two-Phase-Win strategy has 58% win rate against the AlphaZero approach and doesn’t lose any game in a 100-game match.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信