头车被动安全系统力特性的测定——大型道路车辆碰撞中的相互作用

M. Sobolevska, D. Horobets, S. Syrota
{"title":"头车被动安全系统力特性的测定——大型道路车辆碰撞中的相互作用","authors":"M. Sobolevska, D. Horobets, S. Syrota","doi":"10.15407/itm2021.04.118","DOIUrl":null,"url":null,"abstract":"One of the priorities of the National Economic Strategy of Ukraine for the Period up to 2030 is the development of the transport sector, in particular railway vehicle renewal, the introduction of high-speed railway passenger transport, and railway traffic safety improvement. The home motor-car trains must be renewed in compliance with new home standards harmonized with European ones, among which one should mention the Ukrainian State Standard DSTU EN 15227, which specifies the passive safety of a passenger train in its emergency collisions with different obstacles. New car designs must provide not only effective up-to-date braking systems to prevent emergency collisions, but also passive safety systems with energy-absorbing devices. The main purpose of these devices is to reduce the longitudinal forces in the intercar connections and the car accelerations to an acceptable level for the three collision scenarios specified in the DSTU EN 15227. The Department of Statistical Dynamics and Multidimensional Mechanical Systems Dynamics, Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, developed a passive protection concept for home high-speed passenger trains in emergency collisions by the DSTU EN 15227 scenarios, proposals on the passive protection of a motor-car train head car, and honeycomb designs of lower- and upper-level energy-absorbing devices (EAD 1 and UL EAD, respectively), which are integrated into the head car front part and serve to damp the major part of the impact energy in front collisions with obstacles. This paper considers DSTU EN 15227 Scenario 3: a collision of a reference motor-car train at a speed of 110 km/h at a railway crossing with a large 15 t road vehicle, which is simulated as a large-size deformable obstacle (LSDO). The aim of the paper is to determine the force characteristic of the interaction of energy-absorbing devices mounted on the head car front part with a large road vehicle in a collision to assess the compliance of the proposed passive protection with the normative requirements. Finite-element models were constructed to analyze the plastic deformation of the elements of the EAD 1 – LSDO, UL EAD – LSDO, and EAD 1 – UL EAD –LSDO systems in a collision with account for geometric and physical nonlinearities, steel dynamic hardening as a function of the impact speed, and varying contact interaction between the elements of the systems considered. The studies conducted made it possible to determine the force characteristics of energy-absorbing device – obstacle interaction and the total characteristic of the contact force between two lower-level devices and two upper-level ones as a function of the obstacle center of mass displacement in a collision. The proposed mathematical models and the calculated force characteristics may be used in the study of the dynamics of a reference motor-car train – large road vehicle collision with the aim to assess the compliance of the passive protection of the home head car under design with the DSTU EN 15227 requirements.","PeriodicalId":287730,"journal":{"name":"Technical mechanics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of the force characteristic of head car’s passive safety system – large road vehicle interaction in a collision\",\"authors\":\"M. Sobolevska, D. Horobets, S. Syrota\",\"doi\":\"10.15407/itm2021.04.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the priorities of the National Economic Strategy of Ukraine for the Period up to 2030 is the development of the transport sector, in particular railway vehicle renewal, the introduction of high-speed railway passenger transport, and railway traffic safety improvement. The home motor-car trains must be renewed in compliance with new home standards harmonized with European ones, among which one should mention the Ukrainian State Standard DSTU EN 15227, which specifies the passive safety of a passenger train in its emergency collisions with different obstacles. New car designs must provide not only effective up-to-date braking systems to prevent emergency collisions, but also passive safety systems with energy-absorbing devices. The main purpose of these devices is to reduce the longitudinal forces in the intercar connections and the car accelerations to an acceptable level for the three collision scenarios specified in the DSTU EN 15227. The Department of Statistical Dynamics and Multidimensional Mechanical Systems Dynamics, Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, developed a passive protection concept for home high-speed passenger trains in emergency collisions by the DSTU EN 15227 scenarios, proposals on the passive protection of a motor-car train head car, and honeycomb designs of lower- and upper-level energy-absorbing devices (EAD 1 and UL EAD, respectively), which are integrated into the head car front part and serve to damp the major part of the impact energy in front collisions with obstacles. This paper considers DSTU EN 15227 Scenario 3: a collision of a reference motor-car train at a speed of 110 km/h at a railway crossing with a large 15 t road vehicle, which is simulated as a large-size deformable obstacle (LSDO). The aim of the paper is to determine the force characteristic of the interaction of energy-absorbing devices mounted on the head car front part with a large road vehicle in a collision to assess the compliance of the proposed passive protection with the normative requirements. Finite-element models were constructed to analyze the plastic deformation of the elements of the EAD 1 – LSDO, UL EAD – LSDO, and EAD 1 – UL EAD –LSDO systems in a collision with account for geometric and physical nonlinearities, steel dynamic hardening as a function of the impact speed, and varying contact interaction between the elements of the systems considered. The studies conducted made it possible to determine the force characteristics of energy-absorbing device – obstacle interaction and the total characteristic of the contact force between two lower-level devices and two upper-level ones as a function of the obstacle center of mass displacement in a collision. The proposed mathematical models and the calculated force characteristics may be used in the study of the dynamics of a reference motor-car train – large road vehicle collision with the aim to assess the compliance of the passive protection of the home head car under design with the DSTU EN 15227 requirements.\",\"PeriodicalId\":287730,\"journal\":{\"name\":\"Technical mechanics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/itm2021.04.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/itm2021.04.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

乌克兰到2030年国家经济战略的优先事项之一是发展运输部门,特别是更新铁路车辆,引进高速铁路客运,改善铁路交通安全。国内机动车辆列车必须按照与欧洲标准一致的新国内标准进行更新,其中应该提到乌克兰国家标准DSTU EN 15227,该标准规定了客运列车与不同障碍物紧急碰撞时的被动安全性。新的汽车设计不仅必须提供有效的最新制动系统以防止紧急碰撞,而且还必须提供具有能量吸收装置的被动安全系统。这些装置的主要目的是在DSTU EN 15227规定的三种碰撞情况下,将车厢间连接处的纵向力和汽车加速度降低到可接受的水平。统计动力学和多维机械系统动力学系、乌克兰国家科学院技术力学研究所和乌克兰国家航天局根据DSTU EN 15227情景制定了国内高速客运列车紧急碰撞被动保护概念、机动车列车车头车厢被动保护建议和上下能级吸能装置蜂窝状设计(EAD 1和UL EAD)。),它们集成在车头前部,在车头与障碍物碰撞时起到阻尼大部分冲击能量的作用。本文考虑DSTU EN 15227情景3:一列参考机动列车以110公里/小时的速度在铁路道口与一辆大型15吨公路车辆相撞,并将其模拟为大型可变形障碍物(LSDO)。本文的目的是确定安装在车头前部的吸能装置在碰撞中与大型道路车辆相互作用的力特性,以评估所提出的被动保护是否符合规范要求。考虑几何和物理非线性、钢的动态硬化随冲击速度的变化以及系统各元素之间接触相互作用的变化,建立了有限元模型,分析了EAD 1 - LSDO、UL EAD - LSDO和EAD 1 - UL EAD - LSDO系统各元素在碰撞中的塑性变形。通过研究,可以确定吸能装置-障碍物相互作用的受力特性,以及碰撞中两个下层装置和两个上层装置之间的接触力随障碍物质心位移的总特性。所提出的数学模型和计算出的力特性可用于研究参考机动车辆列车-大型道路车辆碰撞的动力学,目的是评估设计中的主头车的被动保护是否符合DSTU EN 15227要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the force characteristic of head car’s passive safety system – large road vehicle interaction in a collision
One of the priorities of the National Economic Strategy of Ukraine for the Period up to 2030 is the development of the transport sector, in particular railway vehicle renewal, the introduction of high-speed railway passenger transport, and railway traffic safety improvement. The home motor-car trains must be renewed in compliance with new home standards harmonized with European ones, among which one should mention the Ukrainian State Standard DSTU EN 15227, which specifies the passive safety of a passenger train in its emergency collisions with different obstacles. New car designs must provide not only effective up-to-date braking systems to prevent emergency collisions, but also passive safety systems with energy-absorbing devices. The main purpose of these devices is to reduce the longitudinal forces in the intercar connections and the car accelerations to an acceptable level for the three collision scenarios specified in the DSTU EN 15227. The Department of Statistical Dynamics and Multidimensional Mechanical Systems Dynamics, Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, developed a passive protection concept for home high-speed passenger trains in emergency collisions by the DSTU EN 15227 scenarios, proposals on the passive protection of a motor-car train head car, and honeycomb designs of lower- and upper-level energy-absorbing devices (EAD 1 and UL EAD, respectively), which are integrated into the head car front part and serve to damp the major part of the impact energy in front collisions with obstacles. This paper considers DSTU EN 15227 Scenario 3: a collision of a reference motor-car train at a speed of 110 km/h at a railway crossing with a large 15 t road vehicle, which is simulated as a large-size deformable obstacle (LSDO). The aim of the paper is to determine the force characteristic of the interaction of energy-absorbing devices mounted on the head car front part with a large road vehicle in a collision to assess the compliance of the proposed passive protection with the normative requirements. Finite-element models were constructed to analyze the plastic deformation of the elements of the EAD 1 – LSDO, UL EAD – LSDO, and EAD 1 – UL EAD –LSDO systems in a collision with account for geometric and physical nonlinearities, steel dynamic hardening as a function of the impact speed, and varying contact interaction between the elements of the systems considered. The studies conducted made it possible to determine the force characteristics of energy-absorbing device – obstacle interaction and the total characteristic of the contact force between two lower-level devices and two upper-level ones as a function of the obstacle center of mass displacement in a collision. The proposed mathematical models and the calculated force characteristics may be used in the study of the dynamics of a reference motor-car train – large road vehicle collision with the aim to assess the compliance of the passive protection of the home head car under design with the DSTU EN 15227 requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信