将网络流量行为分析分解为控制平面和数据平面

Basil AsSadhan, Hyong S. Kim, José M. F. Moura, Xiaohui Wang
{"title":"将网络流量行为分析分解为控制平面和数据平面","authors":"Basil AsSadhan, Hyong S. Kim, José M. F. Moura, Xiaohui Wang","doi":"10.1109/IPDPS.2008.4536559","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze network traffic behavior by decomposing header traffic into control and data planes to study the relationship between the two planes. By computing the cross-correlation between the control and data traffics, we observe a general 'similar' behavior between the two planes during normal behavior, and that this similarity is affected during abnormal behaviors. This allows us to focus on abnormal changes in network traffic behavior. We test our approach on the Network Intrusion Dataset provided by the Information Exploration Shootout (IES) project and the 1999 DARPA Intrusion detection Evaluation Dataset from the MIT Lincoln Lab. We find that TCP control and data traffic have high correlation levels during benign normal applications. This correlation is reduced when attacks that affect the aggregate traffic are present in the two datasets.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Network traffic behavior analysis by decomposition into control and data planes\",\"authors\":\"Basil AsSadhan, Hyong S. Kim, José M. F. Moura, Xiaohui Wang\",\"doi\":\"10.1109/IPDPS.2008.4536559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze network traffic behavior by decomposing header traffic into control and data planes to study the relationship between the two planes. By computing the cross-correlation between the control and data traffics, we observe a general 'similar' behavior between the two planes during normal behavior, and that this similarity is affected during abnormal behaviors. This allows us to focus on abnormal changes in network traffic behavior. We test our approach on the Network Intrusion Dataset provided by the Information Exploration Shootout (IES) project and the 1999 DARPA Intrusion detection Evaluation Dataset from the MIT Lincoln Lab. We find that TCP control and data traffic have high correlation levels during benign normal applications. This correlation is reduced when attacks that affect the aggregate traffic are present in the two datasets.\",\"PeriodicalId\":162608,\"journal\":{\"name\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2008.4536559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文通过将报头流量分解为控制平面和数据平面来分析网络流量行为,研究两个平面之间的关系。通过计算控制流量和数据流量之间的相互关系,我们观察到两个平面在正常行为期间具有一般的“相似”行为,并且这种相似性在异常行为期间受到影响。这使我们能够关注网络流量行为中的异常变化。我们在信息探索射击(IES)项目提供的网络入侵数据集和麻省理工学院林肯实验室1999年DARPA入侵检测评估数据集上测试了我们的方法。我们发现TCP控制和数据流量在良性的正常应用中具有很高的相关性。当影响聚合流量的攻击存在于两个数据集中时,这种相关性就会降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network traffic behavior analysis by decomposition into control and data planes
In this paper, we analyze network traffic behavior by decomposing header traffic into control and data planes to study the relationship between the two planes. By computing the cross-correlation between the control and data traffics, we observe a general 'similar' behavior between the two planes during normal behavior, and that this similarity is affected during abnormal behaviors. This allows us to focus on abnormal changes in network traffic behavior. We test our approach on the Network Intrusion Dataset provided by the Information Exploration Shootout (IES) project and the 1999 DARPA Intrusion detection Evaluation Dataset from the MIT Lincoln Lab. We find that TCP control and data traffic have high correlation levels during benign normal applications. This correlation is reduced when attacks that affect the aggregate traffic are present in the two datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信