高性能脉冲神经网络模拟器

Jiri Khun, Martin Novotný, M. Skrbek
{"title":"高性能脉冲神经网络模拟器","authors":"Jiri Khun, Martin Novotný, M. Skrbek","doi":"10.1109/MECO.2019.8760291","DOIUrl":null,"url":null,"abstract":"Simulation of neural networks is a significant task for contemporary artificial intelligence research. Despite the availability of modern processing hardware, the task is still too demanding to be done in a sequential way. Therefore, a parallel computation approach is almost always necessary. Modern graphical accelerators (GPUs) represent highly parallel machines with a significant computational performance that can be unleashed only under certain conditions including threads scheduling, proper sources occupation, aligned data access, communication management, etc. We have proposed a novel acceleration approach for large neural networks. It is using a GPU and incorporating biologically highly precise spiking neurons that can imitate real biological neurons. The simulator can be, for example, used for research of communication dynamics of large neural networks with tens of thousands of spiking neurons.","PeriodicalId":141324,"journal":{"name":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-Performance Spiking Neural Network Simulator\",\"authors\":\"Jiri Khun, Martin Novotný, M. Skrbek\",\"doi\":\"10.1109/MECO.2019.8760291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation of neural networks is a significant task for contemporary artificial intelligence research. Despite the availability of modern processing hardware, the task is still too demanding to be done in a sequential way. Therefore, a parallel computation approach is almost always necessary. Modern graphical accelerators (GPUs) represent highly parallel machines with a significant computational performance that can be unleashed only under certain conditions including threads scheduling, proper sources occupation, aligned data access, communication management, etc. We have proposed a novel acceleration approach for large neural networks. It is using a GPU and incorporating biologically highly precise spiking neurons that can imitate real biological neurons. The simulator can be, for example, used for research of communication dynamics of large neural networks with tens of thousands of spiking neurons.\",\"PeriodicalId\":141324,\"journal\":{\"name\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2019.8760291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2019.8760291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经网络仿真是当代人工智能研究的重要课题。尽管有了现代处理硬件,但这项任务仍然过于苛刻,无法按顺序完成。因此,并行计算方法几乎总是必要的。现代图形加速器(gpu)代表高度并行的机器,具有显著的计算性能,只有在某些条件下才能释放,包括线程调度,适当的资源占用,对齐的数据访问,通信管理等。我们提出了一种新的大型神经网络加速方法。它使用了一个GPU,并结合了生物学上高度精确的尖峰神经元,可以模仿真实的生物神经元。例如,该模拟器可用于研究具有数万个尖峰神经元的大型神经网络的通信动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance Spiking Neural Network Simulator
Simulation of neural networks is a significant task for contemporary artificial intelligence research. Despite the availability of modern processing hardware, the task is still too demanding to be done in a sequential way. Therefore, a parallel computation approach is almost always necessary. Modern graphical accelerators (GPUs) represent highly parallel machines with a significant computational performance that can be unleashed only under certain conditions including threads scheduling, proper sources occupation, aligned data access, communication management, etc. We have proposed a novel acceleration approach for large neural networks. It is using a GPU and incorporating biologically highly precise spiking neurons that can imitate real biological neurons. The simulator can be, for example, used for research of communication dynamics of large neural networks with tens of thousands of spiking neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信