基于主成分分析和迭代最近点算法的三维点云匹配

Chi Yuan, Xiaoqing Yu, Ziyue Luo
{"title":"基于主成分分析和迭代最近点算法的三维点云匹配","authors":"Chi Yuan, Xiaoqing Yu, Ziyue Luo","doi":"10.1109/ICALIP.2016.7846655","DOIUrl":null,"url":null,"abstract":"Point cloud matching is one of the key technologies of optical three-dimensional contour measurement. Most of the point cloud matching without landmark used the iterative closest point algorithm. In order to improve the performance of the iterative closest point algorithm, the two-step iterative closest point algorithm was proposed. The improved algorithm is divided into a rough matching step and accurate matching step. Rough matching used the principal component analysis algorithm, while the fine matching used the improved iterative closest point algorithm. Compared with the classic iterative closest point algorithm, the improved algorithm can match the partial coincident point cloud. At the same time, the experiment can validate the effectiveness of the proposed algorithm.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"3D point cloud matching based on principal component analysis and iterative closest point algorithm\",\"authors\":\"Chi Yuan, Xiaoqing Yu, Ziyue Luo\",\"doi\":\"10.1109/ICALIP.2016.7846655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point cloud matching is one of the key technologies of optical three-dimensional contour measurement. Most of the point cloud matching without landmark used the iterative closest point algorithm. In order to improve the performance of the iterative closest point algorithm, the two-step iterative closest point algorithm was proposed. The improved algorithm is divided into a rough matching step and accurate matching step. Rough matching used the principal component analysis algorithm, while the fine matching used the improved iterative closest point algorithm. Compared with the classic iterative closest point algorithm, the improved algorithm can match the partial coincident point cloud. At the same time, the experiment can validate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":184170,\"journal\":{\"name\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALIP.2016.7846655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

点云匹配是光学三维轮廓测量的关键技术之一。无地标点云匹配多采用迭代最近点算法。为了提高迭代最近点算法的性能,提出了两步迭代最近点算法。改进后的算法分为粗匹配步骤和精确匹配步骤。粗匹配采用主成分分析算法,精匹配采用改进迭代最近邻算法。与经典迭代最近点算法相比,改进算法能够匹配部分重合点云。同时,通过实验验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D point cloud matching based on principal component analysis and iterative closest point algorithm
Point cloud matching is one of the key technologies of optical three-dimensional contour measurement. Most of the point cloud matching without landmark used the iterative closest point algorithm. In order to improve the performance of the iterative closest point algorithm, the two-step iterative closest point algorithm was proposed. The improved algorithm is divided into a rough matching step and accurate matching step. Rough matching used the principal component analysis algorithm, while the fine matching used the improved iterative closest point algorithm. Compared with the classic iterative closest point algorithm, the improved algorithm can match the partial coincident point cloud. At the same time, the experiment can validate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信