BP神经网络在碳酸盐岩岩溶储层预测中的应用

Yixin Yu, Jinchuan Zhang, Zhijun Jin
{"title":"BP神经网络在碳酸盐岩岩溶储层预测中的应用","authors":"Yixin Yu, Jinchuan Zhang, Zhijun Jin","doi":"10.1109/ISCID.2011.135","DOIUrl":null,"url":null,"abstract":"Effective porosity is one of the most important parameters in reservoir predication, especially in the carbonate karst reservoirs. In contrast to the calculated results by conventional statistical models, the BP neural network model can predict the porosity of reservoir more accurately because of its high nonlinear mapping ability and very strong abilities of self-adaptation and self-study. In this article, the author unified the different sampling interval of seismic and well logging responses by the mathematical method. Then discussed the correlation of them by the multiple linear regression. On that basis, the authors established the BP neural network model to predict the effective porosity of the reservoirs. The results shows that the porosity and the developed zone of fracture can be predicted in combination of three attributes of seismic and well logging data, moreover, the result is comparatively consistent well with the actually measured porosity and the well performance in study area.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Application of the BP Neural Network to Carbonate Karst Reservoirs Prediction\",\"authors\":\"Yixin Yu, Jinchuan Zhang, Zhijun Jin\",\"doi\":\"10.1109/ISCID.2011.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective porosity is one of the most important parameters in reservoir predication, especially in the carbonate karst reservoirs. In contrast to the calculated results by conventional statistical models, the BP neural network model can predict the porosity of reservoir more accurately because of its high nonlinear mapping ability and very strong abilities of self-adaptation and self-study. In this article, the author unified the different sampling interval of seismic and well logging responses by the mathematical method. Then discussed the correlation of them by the multiple linear regression. On that basis, the authors established the BP neural network model to predict the effective porosity of the reservoirs. The results shows that the porosity and the developed zone of fracture can be predicted in combination of three attributes of seismic and well logging data, moreover, the result is comparatively consistent well with the actually measured porosity and the well performance in study area.\",\"PeriodicalId\":224504,\"journal\":{\"name\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2011.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效孔隙度是储层预测,特别是碳酸盐岩岩溶储层预测的重要参数之一。与传统统计模型的计算结果相比,BP神经网络模型具有较高的非线性映射能力和很强的自适应、自学习能力,能够更准确地预测储层孔隙度。本文用数学方法统一了地震响应和测井响应的不同采样间隔。然后用多元线性回归分析了两者的相关性。在此基础上,建立BP神经网络模型预测储层有效孔隙度。结果表明,结合地震和测井资料的三种属性,可以预测储层孔隙度和裂缝发育区,且预测结果与研究区实测孔隙度和井况较为吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Application of the BP Neural Network to Carbonate Karst Reservoirs Prediction
Effective porosity is one of the most important parameters in reservoir predication, especially in the carbonate karst reservoirs. In contrast to the calculated results by conventional statistical models, the BP neural network model can predict the porosity of reservoir more accurately because of its high nonlinear mapping ability and very strong abilities of self-adaptation and self-study. In this article, the author unified the different sampling interval of seismic and well logging responses by the mathematical method. Then discussed the correlation of them by the multiple linear regression. On that basis, the authors established the BP neural network model to predict the effective porosity of the reservoirs. The results shows that the porosity and the developed zone of fracture can be predicted in combination of three attributes of seismic and well logging data, moreover, the result is comparatively consistent well with the actually measured porosity and the well performance in study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信