有效和鲁棒的计算近似的中间轴

Yuandong Yang, O. Brock, R. Moll
{"title":"有效和鲁棒的计算近似的中间轴","authors":"Yuandong Yang, O. Brock, R. Moll","doi":"10.2312/SM.20041372","DOIUrl":null,"url":null,"abstract":"The medial axis can be viewed as a compact representation for an arbitrary model; it is an essential geometric structure in many applications. A number of practical algorithms for its computation have been aimed at speeding up its computation and at addressing its instabilities. In this paper we propose a new algorithm to compute the medial axis with arbitrary precision. It exhibits several desirable properties not previously combined in a practical and efficient algorithm. First, it allows for a tradeoff between computation time and accuracy, making it well-suited for applications in which an approximation of the medial axis suffices, but computational efficiency is of particular concern. Second, it is output sensitive: the computation complexity of the algorithm does not depend on the size of the representation of a model, but on the size of the representation of the resulting medial axis. Third, the densities of the approximated medial axis points in different areas are adaptive to local free space volumes, based on the assumption that a coarser approximation in wide open area can still suffice the requirements of the applications. We present theoretical results, bounding the error introduced by the approximation process. The algorithm has been implemented and experimental results are presented that illustrate its computational efficiency and robustness.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Efficient and robust computation of an approximated medial axis\",\"authors\":\"Yuandong Yang, O. Brock, R. Moll\",\"doi\":\"10.2312/SM.20041372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The medial axis can be viewed as a compact representation for an arbitrary model; it is an essential geometric structure in many applications. A number of practical algorithms for its computation have been aimed at speeding up its computation and at addressing its instabilities. In this paper we propose a new algorithm to compute the medial axis with arbitrary precision. It exhibits several desirable properties not previously combined in a practical and efficient algorithm. First, it allows for a tradeoff between computation time and accuracy, making it well-suited for applications in which an approximation of the medial axis suffices, but computational efficiency is of particular concern. Second, it is output sensitive: the computation complexity of the algorithm does not depend on the size of the representation of a model, but on the size of the representation of the resulting medial axis. Third, the densities of the approximated medial axis points in different areas are adaptive to local free space volumes, based on the assumption that a coarser approximation in wide open area can still suffice the requirements of the applications. We present theoretical results, bounding the error introduced by the approximation process. The algorithm has been implemented and experimental results are presented that illustrate its computational efficiency and robustness.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/SM.20041372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/SM.20041372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

中间轴可以看作是任意模型的紧凑表示;它是许多应用中必不可少的几何结构。一些实用的计算算法旨在加快其计算速度和解决其不稳定性。本文提出了一种计算任意精度的中轴线的新算法。它显示了几个理想的特性,这些特性在以前的实用和高效的算法中没有结合起来。首先,它允许在计算时间和精度之间进行权衡,使其非常适合那些近似的中轴线就足够了,但特别关注计算效率的应用程序。其次,它是输出敏感的:算法的计算复杂度不取决于模型表示的大小,而是取决于生成的中间轴表示的大小。第三,假设在大开放区域中,更粗略的近似仍然可以满足应用的要求,因此不同区域内近似的中轴线点的密度可以适应局部自由空间体积。我们给出了理论结果,限定了由近似过程引入的误差。实验结果表明了该算法的计算效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and robust computation of an approximated medial axis
The medial axis can be viewed as a compact representation for an arbitrary model; it is an essential geometric structure in many applications. A number of practical algorithms for its computation have been aimed at speeding up its computation and at addressing its instabilities. In this paper we propose a new algorithm to compute the medial axis with arbitrary precision. It exhibits several desirable properties not previously combined in a practical and efficient algorithm. First, it allows for a tradeoff between computation time and accuracy, making it well-suited for applications in which an approximation of the medial axis suffices, but computational efficiency is of particular concern. Second, it is output sensitive: the computation complexity of the algorithm does not depend on the size of the representation of a model, but on the size of the representation of the resulting medial axis. Third, the densities of the approximated medial axis points in different areas are adaptive to local free space volumes, based on the assumption that a coarser approximation in wide open area can still suffice the requirements of the applications. We present theoretical results, bounding the error introduced by the approximation process. The algorithm has been implemented and experimental results are presented that illustrate its computational efficiency and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信