基于地理语境的城市场景语义分割结构化预测

M. Volpi, V. Ferrari
{"title":"基于地理语境的城市场景语义分割结构化预测","authors":"M. Volpi, V. Ferrari","doi":"10.1109/JURSE.2015.7120490","DOIUrl":null,"url":null,"abstract":"In this work we address the problem of semantic segmentation of urban remote sensing images into land cover maps. We propose to tackle this task by learning the geographic context of classes and use it to favor or discourage certain spatial configuration of label assignments. For this reason, we learn from training data two spatial priors enforcing different key aspects of the geographical space: local co-occurrence and relative location of land cover classes. We propose to embed these geographic context potentials into a pairwise conditional random field (CRF) which models them jointly with unary potentials from a random forest (RF) classifier. We train the RF on a large set of descriptors which allow to properly account for the class appearance variations induced by the high spatial resolution. We evaluate our approach by an exhaustive experimental comparisons on a set of 20 QuickBird pansharpened multi-spectral images.","PeriodicalId":207233,"journal":{"name":"2015 Joint Urban Remote Sensing Event (JURSE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Structured prediction for urban scene semantic segmentation with geographic context\",\"authors\":\"M. Volpi, V. Ferrari\",\"doi\":\"10.1109/JURSE.2015.7120490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we address the problem of semantic segmentation of urban remote sensing images into land cover maps. We propose to tackle this task by learning the geographic context of classes and use it to favor or discourage certain spatial configuration of label assignments. For this reason, we learn from training data two spatial priors enforcing different key aspects of the geographical space: local co-occurrence and relative location of land cover classes. We propose to embed these geographic context potentials into a pairwise conditional random field (CRF) which models them jointly with unary potentials from a random forest (RF) classifier. We train the RF on a large set of descriptors which allow to properly account for the class appearance variations induced by the high spatial resolution. We evaluate our approach by an exhaustive experimental comparisons on a set of 20 QuickBird pansharpened multi-spectral images.\",\"PeriodicalId\":207233,\"journal\":{\"name\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JURSE.2015.7120490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint Urban Remote Sensing Event (JURSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2015.7120490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项工作中,我们解决了城市遥感图像到土地覆盖图的语义分割问题。我们建议通过学习班级的地理环境来解决这个问题,并利用它来支持或阻止标签分配的某些空间配置。出于这个原因,我们从训练数据中学习到两个空间先验,它们执行地理空间的不同关键方面:局部共现和土地覆盖类别的相对位置。我们建议将这些地理背景电位嵌入到一个成对条件随机场(CRF)中,该随机场将它们与随机森林(RF)分类器中的一元电位联合建模。我们在大量描述符上训练RF,这些描述符允许适当地解释由高空间分辨率引起的类外观变化。我们通过一组20 QuickBird泛锐化多光谱图像的详尽实验比较来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured prediction for urban scene semantic segmentation with geographic context
In this work we address the problem of semantic segmentation of urban remote sensing images into land cover maps. We propose to tackle this task by learning the geographic context of classes and use it to favor or discourage certain spatial configuration of label assignments. For this reason, we learn from training data two spatial priors enforcing different key aspects of the geographical space: local co-occurrence and relative location of land cover classes. We propose to embed these geographic context potentials into a pairwise conditional random field (CRF) which models them jointly with unary potentials from a random forest (RF) classifier. We train the RF on a large set of descriptors which allow to properly account for the class appearance variations induced by the high spatial resolution. We evaluate our approach by an exhaustive experimental comparisons on a set of 20 QuickBird pansharpened multi-spectral images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信