{"title":"基于任务的自适应","authors":"D. Garlan, V. Poladian, B. Schmerl, J. Sousa","doi":"10.1145/1075405.1075416","DOIUrl":null,"url":null,"abstract":"Recently there has been increasing interest in developing systems that can adapt dynamically to cope with changing environmental conditions and unexpected system errors. Most efforts for achieving self-adaptation have focused on the mechanisms for detecting opportunities for improvement and then taking appropriate action. However, such mechanisms beg the question: what is the system trying to achieve? In a given situation there may be many possible adaptations, and knowing which one to pick is a difficult question. In this paper we advocate the use of explicit representation of user task as a critical element in addressing this missing link.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Task-based self-adaptation\",\"authors\":\"D. Garlan, V. Poladian, B. Schmerl, J. Sousa\",\"doi\":\"10.1145/1075405.1075416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently there has been increasing interest in developing systems that can adapt dynamically to cope with changing environmental conditions and unexpected system errors. Most efforts for achieving self-adaptation have focused on the mechanisms for detecting opportunities for improvement and then taking appropriate action. However, such mechanisms beg the question: what is the system trying to achieve? In a given situation there may be many possible adaptations, and knowing which one to pick is a difficult question. In this paper we advocate the use of explicit representation of user task as a critical element in addressing this missing link.\",\"PeriodicalId\":326554,\"journal\":{\"name\":\"Workshop on Self-Healing Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Self-Healing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1075405.1075416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1075405.1075416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recently there has been increasing interest in developing systems that can adapt dynamically to cope with changing environmental conditions and unexpected system errors. Most efforts for achieving self-adaptation have focused on the mechanisms for detecting opportunities for improvement and then taking appropriate action. However, such mechanisms beg the question: what is the system trying to achieve? In a given situation there may be many possible adaptations, and knowing which one to pick is a difficult question. In this paper we advocate the use of explicit representation of user task as a critical element in addressing this missing link.