从场景图生成野生动物图像

Yoshio Rubio, Marco A. Contreras-Cruz
{"title":"从场景图生成野生动物图像","authors":"Yoshio Rubio, Marco A. Contreras-Cruz","doi":"10.1109/CVPRW59228.2023.00036","DOIUrl":null,"url":null,"abstract":"Image generation from natural language descriptions is an exciting and challenging task in computer vision and natural language processing. In this work, we propose a novel method to generate synthetic images from scene graphs in the context of wildlife scenarios. Given a scene graph, our method uses a graph convolutional network to predict semantic layouts, and a semi-parametric approach based on a cascade refinement network to synthesize the final image. We test our approach on a subset of COCO dataset, which we call COCO-Wildlife. Our results outperform the baselines, both quantitatively and qualitatively, and the visual results show the ability of our approach to generate stunning images with natural interaction between the different objects. Our findings show the potential to expand the use case of the proposed method to other contexts where scale and realism is fundamental.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wildlife Image Generation from Scene Graphs\",\"authors\":\"Yoshio Rubio, Marco A. Contreras-Cruz\",\"doi\":\"10.1109/CVPRW59228.2023.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image generation from natural language descriptions is an exciting and challenging task in computer vision and natural language processing. In this work, we propose a novel method to generate synthetic images from scene graphs in the context of wildlife scenarios. Given a scene graph, our method uses a graph convolutional network to predict semantic layouts, and a semi-parametric approach based on a cascade refinement network to synthesize the final image. We test our approach on a subset of COCO dataset, which we call COCO-Wildlife. Our results outperform the baselines, both quantitatively and qualitatively, and the visual results show the ability of our approach to generate stunning images with natural interaction between the different objects. Our findings show the potential to expand the use case of the proposed method to other contexts where scale and realism is fundamental.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从自然语言描述中生成图像是计算机视觉和自然语言处理中一个令人兴奋和具有挑战性的任务。在这项工作中,我们提出了一种从野生动物场景的场景图中生成合成图像的新方法。给定一个场景图,我们的方法使用图卷积网络来预测语义布局,并使用基于级联优化网络的半参数方法来合成最终图像。我们在COCO数据集的一个子集上测试了我们的方法,我们称之为COCO- wildlife。我们的结果在数量和质量上都优于基线,视觉结果表明我们的方法能够通过不同对象之间的自然交互生成令人惊叹的图像。我们的研究结果表明,将所提出的方法的用例扩展到规模和现实主义是基础的其他环境中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wildlife Image Generation from Scene Graphs
Image generation from natural language descriptions is an exciting and challenging task in computer vision and natural language processing. In this work, we propose a novel method to generate synthetic images from scene graphs in the context of wildlife scenarios. Given a scene graph, our method uses a graph convolutional network to predict semantic layouts, and a semi-parametric approach based on a cascade refinement network to synthesize the final image. We test our approach on a subset of COCO dataset, which we call COCO-Wildlife. Our results outperform the baselines, both quantitatively and qualitatively, and the visual results show the ability of our approach to generate stunning images with natural interaction between the different objects. Our findings show the potential to expand the use case of the proposed method to other contexts where scale and realism is fundamental.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信