基于OpenPDC平台的低频振荡模态识别

Jian Zuo, Jihong Tang, Hu Guo, Dijun Hu, Keren Zhang, Meng Xiang
{"title":"基于OpenPDC平台的低频振荡模态识别","authors":"Jian Zuo, Jihong Tang, Hu Guo, Dijun Hu, Keren Zhang, Meng Xiang","doi":"10.1109/ICSAI48974.2019.9010190","DOIUrl":null,"url":null,"abstract":"Low frequency oscillation in power system may cause system failure and blackout. It is possible to avoid low frequency oscillation if we can detect the oscillation mode with low damping in early stage. This paper presents the Frequency Domain Decomposition (FDD) method, which can extract the low frequency oscillation modes from ambient measurement data of Phasor Measurement Units(PMU). The parameters of mode shape from poorly damped oscillation modes, such as damping ratio and modal frequency, can be directly determined from ambient PMU measurements. Then this paper presents the implementation of oscillation mode identification application with OpenPDC platform, which is an open-source platform and provides an easy-to-use test platform for phasor measurement application. The case study shows that the implementation of Oscillation Mode Identification module with FDD method and OpenPDC platform is very efficient for processing large quantity of PMU data and identify low frequency oscillation mode, which is key to take early actions avoiding low-frequency oscillation in power system.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Frequency Oscillation Mode Identification with OpenPDC Platform\",\"authors\":\"Jian Zuo, Jihong Tang, Hu Guo, Dijun Hu, Keren Zhang, Meng Xiang\",\"doi\":\"10.1109/ICSAI48974.2019.9010190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low frequency oscillation in power system may cause system failure and blackout. It is possible to avoid low frequency oscillation if we can detect the oscillation mode with low damping in early stage. This paper presents the Frequency Domain Decomposition (FDD) method, which can extract the low frequency oscillation modes from ambient measurement data of Phasor Measurement Units(PMU). The parameters of mode shape from poorly damped oscillation modes, such as damping ratio and modal frequency, can be directly determined from ambient PMU measurements. Then this paper presents the implementation of oscillation mode identification application with OpenPDC platform, which is an open-source platform and provides an easy-to-use test platform for phasor measurement application. The case study shows that the implementation of Oscillation Mode Identification module with FDD method and OpenPDC platform is very efficient for processing large quantity of PMU data and identify low frequency oscillation mode, which is key to take early actions avoiding low-frequency oscillation in power system.\",\"PeriodicalId\":270809,\"journal\":{\"name\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI48974.2019.9010190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电力系统中的低频振荡会引起系统故障和停电。如果能在早期检测出低阻尼的振荡模式,就有可能避免低频振荡。提出了从相量测量单元(PMU)环境测量数据中提取低频振荡模态的频域分解(FDD)方法。低阻尼振动模态的振型参数,如阻尼比和模态频率,可以直接从环境PMU测量中确定。然后利用OpenPDC平台实现振荡模态识别应用。OpenPDC平台是一个开源平台,为相量测量应用提供了一个易于使用的测试平台。实例研究表明,采用FDD方法和OpenPDC平台实现的振荡模态识别模块能够有效地处理大量PMU数据,识别低频振荡模态,是电力系统早期采取措施避免低频振荡的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Frequency Oscillation Mode Identification with OpenPDC Platform
Low frequency oscillation in power system may cause system failure and blackout. It is possible to avoid low frequency oscillation if we can detect the oscillation mode with low damping in early stage. This paper presents the Frequency Domain Decomposition (FDD) method, which can extract the low frequency oscillation modes from ambient measurement data of Phasor Measurement Units(PMU). The parameters of mode shape from poorly damped oscillation modes, such as damping ratio and modal frequency, can be directly determined from ambient PMU measurements. Then this paper presents the implementation of oscillation mode identification application with OpenPDC platform, which is an open-source platform and provides an easy-to-use test platform for phasor measurement application. The case study shows that the implementation of Oscillation Mode Identification module with FDD method and OpenPDC platform is very efficient for processing large quantity of PMU data and identify low frequency oscillation mode, which is key to take early actions avoiding low-frequency oscillation in power system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信