利用结构依赖嵌入改进生物医学类比检索

Amandalynne Paullada, B. Percha, T. Cohen
{"title":"利用结构依赖嵌入改进生物医学类比检索","authors":"Amandalynne Paullada, B. Percha, T. Cohen","doi":"10.18653/v1/2020.bionlp-1.4","DOIUrl":null,"url":null,"abstract":"Inferring the nature of the relationships between biomedical entities from text is an important problem due to the difficulty of maintaining human-curated knowledge bases in rapidly evolving fields. Neural word embeddings have earned attention for an apparent ability to encode relational information. However, word embedding models that disregard syntax during training are limited in their ability to encode the structural relationships fundamental to cognitive theories of analogy. In this paper, we demonstrate the utility of encoding dependency structure in word embeddings in a model we call Embedding of Structural Dependencies (ESD) as a way to represent biomedical relationships in two analogical retrieval tasks: a relationship retrieval (RR) task, and a literature-based discovery (LBD) task meant to hypothesize plausible relationships between pairs of entities unseen in training. We compare our model to skip-gram with negative sampling (SGNS), using 19 databases of biomedical relationships as our evaluation data, with improvements in performance on 17 (LBD) and 18 (RR) of these sets. These results suggest embeddings encoding dependency path information are of value for biomedical analogy retrieval.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improving Biomedical Analogical Retrieval with Embedding of Structural Dependencies\",\"authors\":\"Amandalynne Paullada, B. Percha, T. Cohen\",\"doi\":\"10.18653/v1/2020.bionlp-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inferring the nature of the relationships between biomedical entities from text is an important problem due to the difficulty of maintaining human-curated knowledge bases in rapidly evolving fields. Neural word embeddings have earned attention for an apparent ability to encode relational information. However, word embedding models that disregard syntax during training are limited in their ability to encode the structural relationships fundamental to cognitive theories of analogy. In this paper, we demonstrate the utility of encoding dependency structure in word embeddings in a model we call Embedding of Structural Dependencies (ESD) as a way to represent biomedical relationships in two analogical retrieval tasks: a relationship retrieval (RR) task, and a literature-based discovery (LBD) task meant to hypothesize plausible relationships between pairs of entities unseen in training. We compare our model to skip-gram with negative sampling (SGNS), using 19 databases of biomedical relationships as our evaluation data, with improvements in performance on 17 (LBD) and 18 (RR) of these sets. These results suggest embeddings encoding dependency path information are of value for biomedical analogy retrieval.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.bionlp-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.bionlp-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从文本中推断生物医学实体之间关系的性质是一个重要的问题,因为在快速发展的领域中维护人类策划的知识库是困难的。神经词嵌入因其编码关系信息的明显能力而受到关注。然而,在训练过程中忽略语法的词嵌入模型在编码类比认知理论基础的结构关系方面的能力有限。在本文中,我们在一个我们称为结构依赖嵌入(ESD)的模型中展示了编码依赖结构在词嵌入中的实用性,作为在两个类比检索任务中表示生物医学关系的一种方式:关系检索(RR)任务和基于文献的发现(LBD)任务,旨在假设训练中未见过的实体对之间的合理关系。我们使用19个生物医学关系数据库作为我们的评估数据,将我们的模型与带负抽样的跳跃图(SGNS)进行比较,其中17个(LBD)和18个(RR)的性能有所改善。这些结果表明,编码依赖路径信息的嵌入在生物医学类比检索中具有一定的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Biomedical Analogical Retrieval with Embedding of Structural Dependencies
Inferring the nature of the relationships between biomedical entities from text is an important problem due to the difficulty of maintaining human-curated knowledge bases in rapidly evolving fields. Neural word embeddings have earned attention for an apparent ability to encode relational information. However, word embedding models that disregard syntax during training are limited in their ability to encode the structural relationships fundamental to cognitive theories of analogy. In this paper, we demonstrate the utility of encoding dependency structure in word embeddings in a model we call Embedding of Structural Dependencies (ESD) as a way to represent biomedical relationships in two analogical retrieval tasks: a relationship retrieval (RR) task, and a literature-based discovery (LBD) task meant to hypothesize plausible relationships between pairs of entities unseen in training. We compare our model to skip-gram with negative sampling (SGNS), using 19 databases of biomedical relationships as our evaluation data, with improvements in performance on 17 (LBD) and 18 (RR) of these sets. These results suggest embeddings encoding dependency path information are of value for biomedical analogy retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信