Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, R. Ross
{"title":"Omnisc'IO:基于语法的空间和时间I/O模式预测方法","authors":"Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, R. Ross","doi":"10.1109/SC.2014.56","DOIUrl":null,"url":null,"abstract":"The increasing gap between the computation performance of post-petascale machines and the performance of their I/O subsystem has motivated many I/O optimizations including prefetching, caching, and scheduling techniques. In order to further improve these techniques, modeling and predicting spatial and temporal I/O patterns of HPC applications as they run has became crucial. In this paper we present Omnisc'IO, an approach that builds a grammar-based model of the I/O behavior of HPC applications and uses it to predict when future I/O operations will occur, and where and how much data will be accessed. Omnisc'IO is transparently integrated into the POSIX and MPI I/O stacks and does not require any modification in applications or higher level I/O libraries. It works without any prior knowledge of the application and converges to accurate predictions within a couple of iterations only. Its implementation is efficient in both computation time and memory footprint.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Omnisc'IO: A Grammar-Based Approach to Spatial and Temporal I/O Patterns Prediction\",\"authors\":\"Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, R. Ross\",\"doi\":\"10.1109/SC.2014.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing gap between the computation performance of post-petascale machines and the performance of their I/O subsystem has motivated many I/O optimizations including prefetching, caching, and scheduling techniques. In order to further improve these techniques, modeling and predicting spatial and temporal I/O patterns of HPC applications as they run has became crucial. In this paper we present Omnisc'IO, an approach that builds a grammar-based model of the I/O behavior of HPC applications and uses it to predict when future I/O operations will occur, and where and how much data will be accessed. Omnisc'IO is transparently integrated into the POSIX and MPI I/O stacks and does not require any modification in applications or higher level I/O libraries. It works without any prior knowledge of the application and converges to accurate predictions within a couple of iterations only. Its implementation is efficient in both computation time and memory footprint.\",\"PeriodicalId\":275261,\"journal\":{\"name\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2014.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Omnisc'IO: A Grammar-Based Approach to Spatial and Temporal I/O Patterns Prediction
The increasing gap between the computation performance of post-petascale machines and the performance of their I/O subsystem has motivated many I/O optimizations including prefetching, caching, and scheduling techniques. In order to further improve these techniques, modeling and predicting spatial and temporal I/O patterns of HPC applications as they run has became crucial. In this paper we present Omnisc'IO, an approach that builds a grammar-based model of the I/O behavior of HPC applications and uses it to predict when future I/O operations will occur, and where and how much data will be accessed. Omnisc'IO is transparently integrated into the POSIX and MPI I/O stacks and does not require any modification in applications or higher level I/O libraries. It works without any prior knowledge of the application and converges to accurate predictions within a couple of iterations only. Its implementation is efficient in both computation time and memory footprint.