基于imu的步态检测和人体活动识别的卷积自注意模型

Shuailin Tao, W. Goh, Yuan Gao
{"title":"基于imu的步态检测和人体活动识别的卷积自注意模型","authors":"Shuailin Tao, W. Goh, Yuan Gao","doi":"10.1109/AICAS57966.2023.10168654","DOIUrl":null,"url":null,"abstract":"This paper presents a convolved self-attention neural network model for gait detection and human activity recognition (HAR) tasks using wearable inertial measurement unit (IMU) sensors. By embedding a convolved window inside the self-attention module, prior time step knowledge is utilized by self-attention layer to improve accuracy. Moreover, a streamlined fully connected (FC) layer without hidden layers is proposed for the feature mixer. This arrangement enables significant reduction of overall network parameters, since hidden layers occupy the majority of the parameters in a transformer encoder. Compared to the other state-of-art neural networks, the proposed method achieved better accuracy of 95.83% and 96.01% with the smallest network size on HAR datasets UCI-HAR and MHEALTH respectively,","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convolved Self-Attention Model for IMU-based Gait Detection and Human Activity Recognition\",\"authors\":\"Shuailin Tao, W. Goh, Yuan Gao\",\"doi\":\"10.1109/AICAS57966.2023.10168654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a convolved self-attention neural network model for gait detection and human activity recognition (HAR) tasks using wearable inertial measurement unit (IMU) sensors. By embedding a convolved window inside the self-attention module, prior time step knowledge is utilized by self-attention layer to improve accuracy. Moreover, a streamlined fully connected (FC) layer without hidden layers is proposed for the feature mixer. This arrangement enables significant reduction of overall network parameters, since hidden layers occupy the majority of the parameters in a transformer encoder. Compared to the other state-of-art neural networks, the proposed method achieved better accuracy of 95.83% and 96.01% with the smallest network size on HAR datasets UCI-HAR and MHEALTH respectively,\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于可穿戴惯性测量单元(IMU)传感器的卷积自注意神经网络模型,用于步态检测和人体活动识别(HAR)任务。通过在自注意模块中嵌入卷积窗口,自注意层利用先验的时间步长知识来提高精度。此外,还提出了一种无隐藏层的流线型全连接(FC)层。由于隐藏层占据了变压器编码器中的大部分参数,因此这种安排可以显著减少整个网络参数。与其他最先进的神经网络相比,该方法在HAR数据集UCI-HAR和MHEALTH上的准确率分别为95.83%和96.01%,网络规模最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Convolved Self-Attention Model for IMU-based Gait Detection and Human Activity Recognition
This paper presents a convolved self-attention neural network model for gait detection and human activity recognition (HAR) tasks using wearable inertial measurement unit (IMU) sensors. By embedding a convolved window inside the self-attention module, prior time step knowledge is utilized by self-attention layer to improve accuracy. Moreover, a streamlined fully connected (FC) layer without hidden layers is proposed for the feature mixer. This arrangement enables significant reduction of overall network parameters, since hidden layers occupy the majority of the parameters in a transformer encoder. Compared to the other state-of-art neural networks, the proposed method achieved better accuracy of 95.83% and 96.01% with the smallest network size on HAR datasets UCI-HAR and MHEALTH respectively,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信