基于生成对抗网络的无监督面对面翻译评价研究

M. Iqbal, Risman Adnan, M. R. Widyanto, T. Basaruddin
{"title":"基于生成对抗网络的无监督面对面翻译评价研究","authors":"M. Iqbal, Risman Adnan, M. R. Widyanto, T. Basaruddin","doi":"10.1145/3310986.3311007","DOIUrl":null,"url":null,"abstract":"Cross-domain image-to-image translation provides mechanism to capture special characteristics of one image collection and convert into other image collection with different representations. Recent research on generative learning have produced powerful image-to-image translation methods in supervised setting, where paired training datasets are available. However, collecting paired training data is difficult, expensive and required manual authoring. We present an evaluation study of recent unsupervised Generative Adversarial Network (GAN) models that can learn to translate a facial image from a source domain X to a target domain Y without paired labeled training dataset. Each GAN model is trained on the same facial image dataset and comparable hyperparameters. We report a comparison result using same GAN model evaluation metrics.","PeriodicalId":252781,"journal":{"name":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation Study of Unsupervised Face-to-Face Translation using Generative Adversarial Networks\",\"authors\":\"M. Iqbal, Risman Adnan, M. R. Widyanto, T. Basaruddin\",\"doi\":\"10.1145/3310986.3311007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-domain image-to-image translation provides mechanism to capture special characteristics of one image collection and convert into other image collection with different representations. Recent research on generative learning have produced powerful image-to-image translation methods in supervised setting, where paired training datasets are available. However, collecting paired training data is difficult, expensive and required manual authoring. We present an evaluation study of recent unsupervised Generative Adversarial Network (GAN) models that can learn to translate a facial image from a source domain X to a target domain Y without paired labeled training dataset. Each GAN model is trained on the same facial image dataset and comparable hyperparameters. We report a comparison result using same GAN model evaluation metrics.\",\"PeriodicalId\":252781,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310986.3311007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310986.3311007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跨域图像到图像的转换提供了捕获一个图像集合的特殊特征并将其转换为具有不同表示的其他图像集合的机制。最近对生成学习的研究已经产生了强大的监督环境下的图像到图像翻译方法,其中成对的训练数据集是可用的。然而,收集成对的训练数据是困难的,昂贵的,并且需要手工编写。我们对最近的无监督生成对抗网络(GAN)模型进行了评估研究,该模型可以在没有成对标记训练数据集的情况下学习将面部图像从源域X翻译到目标域Y。每个GAN模型都在相同的面部图像数据集和可比较的超参数上进行训练。我们报告了使用相同GAN模型评估指标的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation Study of Unsupervised Face-to-Face Translation using Generative Adversarial Networks
Cross-domain image-to-image translation provides mechanism to capture special characteristics of one image collection and convert into other image collection with different representations. Recent research on generative learning have produced powerful image-to-image translation methods in supervised setting, where paired training datasets are available. However, collecting paired training data is difficult, expensive and required manual authoring. We present an evaluation study of recent unsupervised Generative Adversarial Network (GAN) models that can learn to translate a facial image from a source domain X to a target domain Y without paired labeled training dataset. Each GAN model is trained on the same facial image dataset and comparable hyperparameters. We report a comparison result using same GAN model evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信