{"title":"使用一种新的定向搜索算法的无监督形态学学习:迈出第一步","authors":"Matthew G. Snover, G. Jarosz, M. Brent","doi":"10.3115/1118647.1118649","DOIUrl":null,"url":null,"abstract":"This paper describes a system for the unsupervised learning of morphological suffixes and stems from word lists. The system is composed of a generative probability model and a novel search algorithm. By examining morphologically rich subsets of an input lexicon, the search identifies highly productive paradigms. Quantitative results are shown by measuring the accuracy of the morphological relations identified. Experiments in English and Polish, as well as comparisons with other recent unsupervised morphology learning algorithms demonstrate the effectiveness of this technique.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Unsupervised Learning of Morphology Using a Novel Directed Search Algorithm: Taking the First Step\",\"authors\":\"Matthew G. Snover, G. Jarosz, M. Brent\",\"doi\":\"10.3115/1118647.1118649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a system for the unsupervised learning of morphological suffixes and stems from word lists. The system is composed of a generative probability model and a novel search algorithm. By examining morphologically rich subsets of an input lexicon, the search identifies highly productive paradigms. Quantitative results are shown by measuring the accuracy of the morphological relations identified. Experiments in English and Polish, as well as comparisons with other recent unsupervised morphology learning algorithms demonstrate the effectiveness of this technique.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"318 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1118647.1118649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118647.1118649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised Learning of Morphology Using a Novel Directed Search Algorithm: Taking the First Step
This paper describes a system for the unsupervised learning of morphological suffixes and stems from word lists. The system is composed of a generative probability model and a novel search algorithm. By examining morphologically rich subsets of an input lexicon, the search identifies highly productive paradigms. Quantitative results are shown by measuring the accuracy of the morphological relations identified. Experiments in English and Polish, as well as comparisons with other recent unsupervised morphology learning algorithms demonstrate the effectiveness of this technique.