使用一种新的定向搜索算法的无监督形态学学习:迈出第一步

Matthew G. Snover, G. Jarosz, M. Brent
{"title":"使用一种新的定向搜索算法的无监督形态学学习:迈出第一步","authors":"Matthew G. Snover, G. Jarosz, M. Brent","doi":"10.3115/1118647.1118649","DOIUrl":null,"url":null,"abstract":"This paper describes a system for the unsupervised learning of morphological suffixes and stems from word lists. The system is composed of a generative probability model and a novel search algorithm. By examining morphologically rich subsets of an input lexicon, the search identifies highly productive paradigms. Quantitative results are shown by measuring the accuracy of the morphological relations identified. Experiments in English and Polish, as well as comparisons with other recent unsupervised morphology learning algorithms demonstrate the effectiveness of this technique.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Unsupervised Learning of Morphology Using a Novel Directed Search Algorithm: Taking the First Step\",\"authors\":\"Matthew G. Snover, G. Jarosz, M. Brent\",\"doi\":\"10.3115/1118647.1118649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a system for the unsupervised learning of morphological suffixes and stems from word lists. The system is composed of a generative probability model and a novel search algorithm. By examining morphologically rich subsets of an input lexicon, the search identifies highly productive paradigms. Quantitative results are shown by measuring the accuracy of the morphological relations identified. Experiments in English and Polish, as well as comparisons with other recent unsupervised morphology learning algorithms demonstrate the effectiveness of this technique.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"318 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1118647.1118649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118647.1118649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

本文描述了一个词形后缀和词根的无监督学习系统。该系统由生成概率模型和一种新颖的搜索算法组成。通过检查输入词典的形态学丰富的子集,搜索识别出高效的范式。通过测量所识别的形态关系的准确性来显示定量结果。英语和波兰语的实验,以及与其他最近的无监督形态学学习算法的比较,证明了该技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Learning of Morphology Using a Novel Directed Search Algorithm: Taking the First Step
This paper describes a system for the unsupervised learning of morphological suffixes and stems from word lists. The system is composed of a generative probability model and a novel search algorithm. By examining morphologically rich subsets of an input lexicon, the search identifies highly productive paradigms. Quantitative results are shown by measuring the accuracy of the morphological relations identified. Experiments in English and Polish, as well as comparisons with other recent unsupervised morphology learning algorithms demonstrate the effectiveness of this technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信