基于群智能优化算法的高光谱图像波段优选

F. Samadzadegan, F. Mahmoudi
{"title":"基于群智能优化算法的高光谱图像波段优选","authors":"F. Samadzadegan, F. Mahmoudi","doi":"10.1109/ICIIP.2011.6108925","DOIUrl":null,"url":null,"abstract":"Despite rich and fine spectral information of hyperspectral imagery, curse of dimensionality and Hughes phenomenon affect the land use/cover classification accuracy of such images. In this situation, optimal feature/band selection based on optimization procedures has high potential to improve the accuracy of hyperspectral image pattern recognition and classification. Among other optimization techniques, Meta heuristic optimization algorithms such as Swarm intelligence-based methods are so capable in solving feature/band selection problems. This paper evaluates the potential of Firefly algorithm (FA) and Particle Swarm Optimization (PSO) as representatives of swarm intelligence-based methodologies in optimal band selection and dimensionality reduction of hyperspectral imagery. Implementation results of Firefly algorithm and PSO in the case of AVIRIS hyperspectral image classification is compared with Genetic algorithm as another well known Meta heuristic optimization method. The preliminarily results confirm the high capabilities of Firefly algorithm and PSO for solving optimal feature/band subset selection.","PeriodicalId":201779,"journal":{"name":"2011 International Conference on Image Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optimum band selection in hyperspectral imagery using swarm intelligence optimization algorithms\",\"authors\":\"F. Samadzadegan, F. Mahmoudi\",\"doi\":\"10.1109/ICIIP.2011.6108925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite rich and fine spectral information of hyperspectral imagery, curse of dimensionality and Hughes phenomenon affect the land use/cover classification accuracy of such images. In this situation, optimal feature/band selection based on optimization procedures has high potential to improve the accuracy of hyperspectral image pattern recognition and classification. Among other optimization techniques, Meta heuristic optimization algorithms such as Swarm intelligence-based methods are so capable in solving feature/band selection problems. This paper evaluates the potential of Firefly algorithm (FA) and Particle Swarm Optimization (PSO) as representatives of swarm intelligence-based methodologies in optimal band selection and dimensionality reduction of hyperspectral imagery. Implementation results of Firefly algorithm and PSO in the case of AVIRIS hyperspectral image classification is compared with Genetic algorithm as another well known Meta heuristic optimization method. The preliminarily results confirm the high capabilities of Firefly algorithm and PSO for solving optimal feature/band subset selection.\",\"PeriodicalId\":201779,\"journal\":{\"name\":\"2011 International Conference on Image Information Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Image Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIP.2011.6108925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Image Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIP.2011.6108925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

尽管高光谱影像的光谱信息丰富、精细,但维度的诅咒和休斯现象影响了高光谱影像的土地利用/覆被分类精度。在这种情况下,基于优化过程的最优特征/波段选择对于提高高光谱图像模式识别和分类的精度具有很大的潜力。在其他优化技术中,元启发式优化算法(如基于群智能的方法)在解决特征/频带选择问题方面非常有能力。本文评价了萤火虫算法(FA)和粒子群算法(PSO)作为基于群体智能的方法在高光谱图像的最优波段选择和降维中的潜力。将萤火虫算法和粒子群算法在AVIRIS高光谱图像分类中的实现结果与另一种著名的Meta启发式优化方法遗传算法进行了比较。初步结果证实了萤火虫算法和粒子群算法在解决最优特征/频带子集选择方面的高能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum band selection in hyperspectral imagery using swarm intelligence optimization algorithms
Despite rich and fine spectral information of hyperspectral imagery, curse of dimensionality and Hughes phenomenon affect the land use/cover classification accuracy of such images. In this situation, optimal feature/band selection based on optimization procedures has high potential to improve the accuracy of hyperspectral image pattern recognition and classification. Among other optimization techniques, Meta heuristic optimization algorithms such as Swarm intelligence-based methods are so capable in solving feature/band selection problems. This paper evaluates the potential of Firefly algorithm (FA) and Particle Swarm Optimization (PSO) as representatives of swarm intelligence-based methodologies in optimal band selection and dimensionality reduction of hyperspectral imagery. Implementation results of Firefly algorithm and PSO in the case of AVIRIS hyperspectral image classification is compared with Genetic algorithm as another well known Meta heuristic optimization method. The preliminarily results confirm the high capabilities of Firefly algorithm and PSO for solving optimal feature/band subset selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信