大数据,小决策:加强数据处理和人类专业知识之间的循环

Zack Bennett, Marc G. L'Heureux
{"title":"大数据,小决策:加强数据处理和人类专业知识之间的循环","authors":"Zack Bennett, Marc G. L'Heureux","doi":"10.1109/CTS.2013.6567205","DOIUrl":null,"url":null,"abstract":"This presentation is a case study examining how LexisNexis uses scaled active learning on the HPCC Systems environment to focus manual topical annotations on critical documents pulled from a large corpus. The active learning system uses natural language processing and machine learning techniques to identify and present “next best” training set candidates to legal editors, combining massive parallel processing with expert human analysis to improve classifier accuracy while minimizing human effort.","PeriodicalId":256633,"journal":{"name":"2013 International Conference on Collaboration Technologies and Systems (CTS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big data, little decisions: Tightening the loop between data crunching and human expertise\",\"authors\":\"Zack Bennett, Marc G. L'Heureux\",\"doi\":\"10.1109/CTS.2013.6567205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This presentation is a case study examining how LexisNexis uses scaled active learning on the HPCC Systems environment to focus manual topical annotations on critical documents pulled from a large corpus. The active learning system uses natural language processing and machine learning techniques to identify and present “next best” training set candidates to legal editors, combining massive parallel processing with expert human analysis to improve classifier accuracy while minimizing human effort.\",\"PeriodicalId\":256633,\"journal\":{\"name\":\"2013 International Conference on Collaboration Technologies and Systems (CTS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Collaboration Technologies and Systems (CTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CTS.2013.6567205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Collaboration Technologies and Systems (CTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTS.2013.6567205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本演讲是一个案例研究,研究了LexisNexis如何在HPCC系统环境中使用规模化主动学习,将重点放在从大型语料库中提取的关键文档上的手动主题注释上。主动学习系统使用自然语言处理和机器学习技术来识别并向法律编辑提供“次优”训练集候选人,将大规模并行处理与专家人工分析相结合,以提高分类器的准确性,同时最大限度地减少人工工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big data, little decisions: Tightening the loop between data crunching and human expertise
This presentation is a case study examining how LexisNexis uses scaled active learning on the HPCC Systems environment to focus manual topical annotations on critical documents pulled from a large corpus. The active learning system uses natural language processing and machine learning techniques to identify and present “next best” training set candidates to legal editors, combining massive parallel processing with expert human analysis to improve classifier accuracy while minimizing human effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信