语音识别的时间扭曲神经网络

K. Aikawa
{"title":"语音识别的时间扭曲神经网络","authors":"K. Aikawa","doi":"10.1109/NNSP.1991.239508","DOIUrl":null,"url":null,"abstract":"The author proposes a time-warping neural network (TWNN) for phoneme-based speech recognition. The TWNN is designed to accept phonemes with arbitrary duration, whereas conventional phoneme recognition networks have a fixed-length input window. The purpose of this network is to cope with not only variability of phoneme duration but also time warping in a phoneme. The proposed network is composed of several time-warping units which each have a time-warping function. The TWNN is characterized by time-warping functions embedded between the input layer and the first hidden layer in the network. The proposed network demonstrates higher phoneme recognition accuracy than a baseline recognizer based on conventional feedforward neural networks and linear time alignment. The recognition accuracy is even higher than that achieved with discrete hidden Markov models.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Speech recognition using time-warping neural networks\",\"authors\":\"K. Aikawa\",\"doi\":\"10.1109/NNSP.1991.239508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author proposes a time-warping neural network (TWNN) for phoneme-based speech recognition. The TWNN is designed to accept phonemes with arbitrary duration, whereas conventional phoneme recognition networks have a fixed-length input window. The purpose of this network is to cope with not only variability of phoneme duration but also time warping in a phoneme. The proposed network is composed of several time-warping units which each have a time-warping function. The TWNN is characterized by time-warping functions embedded between the input layer and the first hidden layer in the network. The proposed network demonstrates higher phoneme recognition accuracy than a baseline recognizer based on conventional feedforward neural networks and linear time alignment. The recognition accuracy is even higher than that achieved with discrete hidden Markov models.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

作者提出了一种基于音素的语音识别时间扭曲神经网络(TWNN)。TWNN可以接受任意长度的音素,而传统的音素识别网络只有固定长度的输入窗口。该网络的目的不仅在于应对音素持续时间的变化,还在于应对音素的时间扭曲。该网络由多个时间规整单元组成,每个时间规整单元都具有时间规整功能。TWNN的特点是在网络的输入层和第一隐层之间嵌入时间规整函数。该网络比基于传统前馈神经网络和线性时间对齐的基线识别器具有更高的音素识别精度。识别精度甚至高于离散隐马尔可夫模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech recognition using time-warping neural networks
The author proposes a time-warping neural network (TWNN) for phoneme-based speech recognition. The TWNN is designed to accept phonemes with arbitrary duration, whereas conventional phoneme recognition networks have a fixed-length input window. The purpose of this network is to cope with not only variability of phoneme duration but also time warping in a phoneme. The proposed network is composed of several time-warping units which each have a time-warping function. The TWNN is characterized by time-warping functions embedded between the input layer and the first hidden layer in the network. The proposed network demonstrates higher phoneme recognition accuracy than a baseline recognizer based on conventional feedforward neural networks and linear time alignment. The recognition accuracy is even higher than that achieved with discrete hidden Markov models.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信