使用布尔变换优化逻辑设计

P. Chavda, J. Jacob, V. Agrawal
{"title":"使用布尔变换优化逻辑设计","authors":"P. Chavda, J. Jacob, V. Agrawal","doi":"10.1109/ICVD.1998.646605","DOIUrl":null,"url":null,"abstract":"When a Boolean function is transformed by exclusive-OR with a suitably selected transform function, the new function is often synthesized with significantly reduced hardware. The transform function is separately synthesized and the original function is recovered as an exclusive-OR of the two functions. We select the transform to reduce the number of cubes in the function to be synthesized. The function is represented as a Shannon expansion about selected variables. A transform function is constructed such that a selected set of cofactors is complemented to minimize the overall number of cubes. Examples of single-output functions show an average area reduction of 19%. For a multiple-output function, transformations can be customized for each output.","PeriodicalId":139023,"journal":{"name":"Proceedings Eleventh International Conference on VLSI Design","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing logic design using Boolean transforms\",\"authors\":\"P. Chavda, J. Jacob, V. Agrawal\",\"doi\":\"10.1109/ICVD.1998.646605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a Boolean function is transformed by exclusive-OR with a suitably selected transform function, the new function is often synthesized with significantly reduced hardware. The transform function is separately synthesized and the original function is recovered as an exclusive-OR of the two functions. We select the transform to reduce the number of cubes in the function to be synthesized. The function is represented as a Shannon expansion about selected variables. A transform function is constructed such that a selected set of cofactors is complemented to minimize the overall number of cubes. Examples of single-output functions show an average area reduction of 19%. For a multiple-output function, transformations can be customized for each output.\",\"PeriodicalId\":139023,\"journal\":{\"name\":\"Proceedings Eleventh International Conference on VLSI Design\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eleventh International Conference on VLSI Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVD.1998.646605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eleventh International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVD.1998.646605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当一个布尔函数与一个适当选择的变换函数进行异或变换时,新函数通常在大大减少硬件的情况下合成。变换函数单独合成,原函数作为两个函数的异或恢复。我们选择变换是为了减少要合成的函数中立方体的数量。该函数表示为关于选定变量的香农展开。构造一个变换函数,使一组选定的辅因子互补,以最小化立方体的总数。单输出函数的例子显示平均面积减少19%。对于多输出函数,可以为每个输出定制转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing logic design using Boolean transforms
When a Boolean function is transformed by exclusive-OR with a suitably selected transform function, the new function is often synthesized with significantly reduced hardware. The transform function is separately synthesized and the original function is recovered as an exclusive-OR of the two functions. We select the transform to reduce the number of cubes in the function to be synthesized. The function is represented as a Shannon expansion about selected variables. A transform function is constructed such that a selected set of cofactors is complemented to minimize the overall number of cubes. Examples of single-output functions show an average area reduction of 19%. For a multiple-output function, transformations can be customized for each output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信