基于前馈神经网络的化工反应器基准并行自适应控制

D. Cajueiro, E. M. Hemerly
{"title":"基于前馈神经网络的化工反应器基准并行自适应控制","authors":"D. Cajueiro, E. M. Hemerly","doi":"10.1109/SBRN.2000.889711","DOIUrl":null,"url":null,"abstract":"This paper applies a parallel scheme for adaptive control that uses only one neural network to a CSTR (continuous stirred tank reactor). Convergence of the identification error is investigated by Lyapunov's second method. The training process of the neural network is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A chemical reactor benchmark for parallel adaptive control using feedforward neural networks\",\"authors\":\"D. Cajueiro, E. M. Hemerly\",\"doi\":\"10.1109/SBRN.2000.889711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper applies a parallel scheme for adaptive control that uses only one neural network to a CSTR (continuous stirred tank reactor). Convergence of the identification error is investigated by Lyapunov's second method. The training process of the neural network is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

针对连续搅拌槽式反应器,提出了一种仅使用一个神经网络的并行自适应控制方案。利用李亚普诺夫第二方法研究了辨识误差的收敛性。神经网络的训练过程采用了两种不同的技术:反向传播和扩展卡尔曼滤波算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A chemical reactor benchmark for parallel adaptive control using feedforward neural networks
This paper applies a parallel scheme for adaptive control that uses only one neural network to a CSTR (continuous stirred tank reactor). Convergence of the identification error is investigated by Lyapunov's second method. The training process of the neural network is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信