利用Siamese网络分析阿拉伯历史手稿的布局

Reem Alaasam, Berat Kurar, Jihad El-Sana
{"title":"利用Siamese网络分析阿拉伯历史手稿的布局","authors":"Reem Alaasam, Berat Kurar, Jihad El-Sana","doi":"10.1109/ICDAR.2019.00123","DOIUrl":null,"url":null,"abstract":"This paper presents layout analysis for historical Arabic documents using siamese network. Given pages from different documents, we divide them into patches of similar sizes. We train a siamese network model that takes as an input a pair of patches and gives as an output a distance that corresponds to the similarity between the two patches. We used the trained model to calculate a distance matrix which in turn is used to cluster the patches of a page as either main text, side text or a background patch. We evaluate our method on challenging historical Arabic manuscripts dataset and report the F-measure. We show the effectiveness of our method by comparing with other works that use deep learning approaches, and show that we have state of art results.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Layout Analysis on Challenging Historical Arabic Manuscripts using Siamese Network\",\"authors\":\"Reem Alaasam, Berat Kurar, Jihad El-Sana\",\"doi\":\"10.1109/ICDAR.2019.00123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents layout analysis for historical Arabic documents using siamese network. Given pages from different documents, we divide them into patches of similar sizes. We train a siamese network model that takes as an input a pair of patches and gives as an output a distance that corresponds to the similarity between the two patches. We used the trained model to calculate a distance matrix which in turn is used to cluster the patches of a page as either main text, side text or a background patch. We evaluate our method on challenging historical Arabic manuscripts dataset and report the F-measure. We show the effectiveness of our method by comparing with other works that use deep learning approaches, and show that we have state of art results.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了利用暹罗网络对阿拉伯历史文献进行版面分析的方法。给定来自不同文档的页面,我们将它们划分为大小相似的补丁。我们训练了一个暹罗网络模型,该模型将一对补丁作为输入,并给出对应于两个补丁之间相似度的距离作为输出。我们使用训练好的模型来计算距离矩阵,该矩阵反过来用于将页面的补丁聚类为主文本,侧文本或背景补丁。我们在具有挑战性的历史阿拉伯手稿数据集上评估了我们的方法,并报告了f值。通过与其他使用深度学习方法的作品进行比较,我们展示了我们方法的有效性,并展示了我们拥有最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layout Analysis on Challenging Historical Arabic Manuscripts using Siamese Network
This paper presents layout analysis for historical Arabic documents using siamese network. Given pages from different documents, we divide them into patches of similar sizes. We train a siamese network model that takes as an input a pair of patches and gives as an output a distance that corresponds to the similarity between the two patches. We used the trained model to calculate a distance matrix which in turn is used to cluster the patches of a page as either main text, side text or a background patch. We evaluate our method on challenging historical Arabic manuscripts dataset and report the F-measure. We show the effectiveness of our method by comparing with other works that use deep learning approaches, and show that we have state of art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信