存在离群客户时具有需求学习的鲁棒动态定价

Xi Chen, Yining Wang
{"title":"存在离群客户时具有需求学习的鲁棒动态定价","authors":"Xi Chen, Yining Wang","doi":"10.2139/ssrn.3650656","DOIUrl":null,"url":null,"abstract":"Dynamic pricing is a core problem in revenue management. Most existing literature assumes that the demand follows a probabilistic model, with an unknown demand curve as the mean. However, in practice, customers may not always behave according to such a model. In “Robust Dynamic Pricing with Demand Learning in the Presence of Outlier Customers,” Chen and Wang study the dynamic pricing problem under model misspecification. To characterize the behavior of outlier customers, an ε-contamination model—the most fundamental model in robust statistics and machine learning, is adopted. The challenges brought by the presence of outlier customers are mainly due to the fact that arrivals of outliers and their exhibited demand behaviors are completely arbitrary. To address these challenges, the authors propose robust dynamic pricing policies that can handle any outlier arrival and demand patterns. The proposed policies are fully adaptive without requiring prior knowledge of the outlier proportion parameter.","PeriodicalId":275253,"journal":{"name":"Operations Research eJournal","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust Dynamic Pricing with Demand Learning in the Presence of Outlier Customers\",\"authors\":\"Xi Chen, Yining Wang\",\"doi\":\"10.2139/ssrn.3650656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic pricing is a core problem in revenue management. Most existing literature assumes that the demand follows a probabilistic model, with an unknown demand curve as the mean. However, in practice, customers may not always behave according to such a model. In “Robust Dynamic Pricing with Demand Learning in the Presence of Outlier Customers,” Chen and Wang study the dynamic pricing problem under model misspecification. To characterize the behavior of outlier customers, an ε-contamination model—the most fundamental model in robust statistics and machine learning, is adopted. The challenges brought by the presence of outlier customers are mainly due to the fact that arrivals of outliers and their exhibited demand behaviors are completely arbitrary. To address these challenges, the authors propose robust dynamic pricing policies that can handle any outlier arrival and demand patterns. The proposed policies are fully adaptive without requiring prior knowledge of the outlier proportion parameter.\",\"PeriodicalId\":275253,\"journal\":{\"name\":\"Operations Research eJournal\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3650656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3650656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

动态定价是收益管理中的一个核心问题。现有文献大多假设需求遵循概率模型,以未知需求曲线为均值。然而,在实践中,客户可能并不总是按照这样的模式行事。在“存在离群客户的需求学习的鲁棒动态定价”一文中,Chen和Wang研究了模型错误规范下的动态定价问题。为了描述离群客户的行为,采用了稳健统计和机器学习中最基本的模型ε-污染模型。离群客户的存在带来的挑战主要是由于离群客户的到来及其所表现出的需求行为是完全任意的。为了应对这些挑战,作者提出了强大的动态定价政策,可以处理任何异常到达和需求模式。所提出的策略是完全自适应的,而不需要先验知识的离群比例参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Dynamic Pricing with Demand Learning in the Presence of Outlier Customers
Dynamic pricing is a core problem in revenue management. Most existing literature assumes that the demand follows a probabilistic model, with an unknown demand curve as the mean. However, in practice, customers may not always behave according to such a model. In “Robust Dynamic Pricing with Demand Learning in the Presence of Outlier Customers,” Chen and Wang study the dynamic pricing problem under model misspecification. To characterize the behavior of outlier customers, an ε-contamination model—the most fundamental model in robust statistics and machine learning, is adopted. The challenges brought by the presence of outlier customers are mainly due to the fact that arrivals of outliers and their exhibited demand behaviors are completely arbitrary. To address these challenges, the authors propose robust dynamic pricing policies that can handle any outlier arrival and demand patterns. The proposed policies are fully adaptive without requiring prior knowledge of the outlier proportion parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信