一种估计正则小波密度差的近端算法

N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter
{"title":"一种估计正则小波密度差的近端算法","authors":"N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter","doi":"10.1109/CSCI49370.2019.00127","DOIUrl":null,"url":null,"abstract":"Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"428 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Proximal Algorithm for Estimating the Regularized Wavelet-Based Density-Difference\",\"authors\":\"N. Mijatovic, Rana Haber, G. Anagnostopoulos, Anthony O. Smith, A. Peter\",\"doi\":\"10.1109/CSCI49370.2019.00127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"428 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密度差(DD)估计是一个重要的无监督学习过程,许多回归方法都离不开它。本文详细介绍了一种估算两种分布密度差(DoD)的新方法。这种新方法以小波展开的形式直接计算DD,而不需要明确地重建单个分布。此外,该方法采用正则化技术,利用l2和l1范数惩罚来稳健地估计小波展开的系数。通过近端梯度下降(PGD)方法实现正则化目标的优化。因此,我们将我们的方法称为正则化小波密度差(RWDD)与PGD。在广泛的模拟数据集上,从复杂的多模态分布到偏态分布,我们的方法与其他当代技术相比表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proximal Algorithm for Estimating the Regularized Wavelet-Based Density-Difference
Density-Difference (DD) estimation is an important unsupervised learning procedure that proceeds many regression methods. The present work details a novel method for estimating the Difference of Densities (DoD) between two distributions. This new method directly calculates the DD, in the form of a wavelet expansion, without the need for explicitly reconstructing individual distributions. Furthermore, the method applies a regularization technique that utilizes both l2 and l1 norm penalties to robustly estimate the coefficients of the wavelet expansion. Optimizing the regularized objective is accomplished via a Proximal Gradient Descent (PGD) approach. Thus, we term our method Regularized Wavelet-based Density-Difference (RWDD) with PGD. On extensive simulated datasets, from complex multimodal to skewed distributions, our method demonstrated superior performance in comparison to other contemporary techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信