基于多fpga的CPU服务器上可扩展的低延迟持久神经机器翻译

E. Nurvitadhi, Mishali Naik, Andrew Boutros, Prerna Budhkar, A. Jafari, Dongup Kwon, D. Sheffield, Abirami Prabhakaran, Karthik Gururaj, Pranavi Appana
{"title":"基于多fpga的CPU服务器上可扩展的低延迟持久神经机器翻译","authors":"E. Nurvitadhi, Mishali Naik, Andrew Boutros, Prerna Budhkar, A. Jafari, Dongup Kwon, D. Sheffield, Abirami Prabhakaran, Karthik Gururaj, Pranavi Appana","doi":"10.1109/ICFPT47387.2019.00054","DOIUrl":null,"url":null,"abstract":"We present a CPU server with multiple FPGAs that is purely software-programmable by a unified framework to enable flexible implementation of modern real-life complex AI that scales to large model size (100M+ parameters), while delivering real-time inference latency (~ms). Using multiple FPGAs, we scale by keeping a large model persistent in on-chip memories across FPGAs to avoid costly off-chip accesses. We study systems with 1 to 8 FPGAs for different devices: Intel® Arria® 10, Stratix® 10, and a research Stratix 10 with an AI chiplet. We present the first multi-FPGA evaluation of a complex NMT with bi-directional LSTMs, attention, and beam search. Our system scales well. Going from 1 to 8 FPGAs allows hosting ~8× larger model with only ~2× latency increase. A batch-1 inference for a 100M-parameter NMT on 8 Stratix 10 FPGAs takes only ~10 ms. This system offers 110× better latency than the only prior NMT work on FPGAs, which uses a high-end FPGA and stores the model off-chip.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Scalable Low-Latency Persistent Neural Machine Translation on CPU Server with Multiple FPGAs\",\"authors\":\"E. Nurvitadhi, Mishali Naik, Andrew Boutros, Prerna Budhkar, A. Jafari, Dongup Kwon, D. Sheffield, Abirami Prabhakaran, Karthik Gururaj, Pranavi Appana\",\"doi\":\"10.1109/ICFPT47387.2019.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a CPU server with multiple FPGAs that is purely software-programmable by a unified framework to enable flexible implementation of modern real-life complex AI that scales to large model size (100M+ parameters), while delivering real-time inference latency (~ms). Using multiple FPGAs, we scale by keeping a large model persistent in on-chip memories across FPGAs to avoid costly off-chip accesses. We study systems with 1 to 8 FPGAs for different devices: Intel® Arria® 10, Stratix® 10, and a research Stratix 10 with an AI chiplet. We present the first multi-FPGA evaluation of a complex NMT with bi-directional LSTMs, attention, and beam search. Our system scales well. Going from 1 to 8 FPGAs allows hosting ~8× larger model with only ~2× latency increase. A batch-1 inference for a 100M-parameter NMT on 8 Stratix 10 FPGAs takes only ~10 ms. This system offers 110× better latency than the only prior NMT work on FPGAs, which uses a high-end FPGA and stores the model off-chip.\",\"PeriodicalId\":241340,\"journal\":{\"name\":\"2019 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT47387.2019.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一个带有多个fpga的CPU服务器,这些fpga是通过统一的框架纯软件可编程的,可以灵活地实现现代现实生活中的复杂人工智能,可扩展到大型模型尺寸(100M+参数),同时提供实时推理延迟(~ms)。使用多个fpga,我们通过在fpga的片上存储器中保持大型模型来进行扩展,以避免昂贵的片外访问。我们研究了针对不同设备的1至8个fpga系统:Intel®Arria®10,Stratix®10和带AI芯片的研究Stratix 10。我们提出了具有双向lstm、注意力和波束搜索的复杂NMT的第一个多fpga评估。我们的系统可扩展性很好。从1到8个fpga允许承载8倍大的模型,而延迟只增加2倍。在8个Stratix 10 fpga上对一个100m参数的NMT进行批1推理只需要~ 10ms。该系统提供了比之前唯一的FPGA上的NMT工作更好的110倍的延迟,它使用高端FPGA并将模型存储在片外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Low-Latency Persistent Neural Machine Translation on CPU Server with Multiple FPGAs
We present a CPU server with multiple FPGAs that is purely software-programmable by a unified framework to enable flexible implementation of modern real-life complex AI that scales to large model size (100M+ parameters), while delivering real-time inference latency (~ms). Using multiple FPGAs, we scale by keeping a large model persistent in on-chip memories across FPGAs to avoid costly off-chip accesses. We study systems with 1 to 8 FPGAs for different devices: Intel® Arria® 10, Stratix® 10, and a research Stratix 10 with an AI chiplet. We present the first multi-FPGA evaluation of a complex NMT with bi-directional LSTMs, attention, and beam search. Our system scales well. Going from 1 to 8 FPGAs allows hosting ~8× larger model with only ~2× latency increase. A batch-1 inference for a 100M-parameter NMT on 8 Stratix 10 FPGAs takes only ~10 ms. This system offers 110× better latency than the only prior NMT work on FPGAs, which uses a high-end FPGA and stores the model off-chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信