相对论波动方程

J. Iliopoulos, T. Tomaras
{"title":"相对论波动方程","authors":"J. Iliopoulos, T. Tomaras","doi":"10.1093/oso/9780198788393.003.0006","DOIUrl":null,"url":null,"abstract":"We derive the most general relativistically covariant linear differential equations, having at most two derivatives, for scalar, spinor and vector fields. We introduce the corresponding Lagrangian and Hamiltonian formalisms and present the expansion of the solutions in terms of plane waves. In each case, we study the propagation properties of the corresponding Green functions. We start with the simplest example of the Klein–Gordon equation for a real field and generalise it to that of N real, or complex fields. As a next step we derive the Weyl, Majorana and Dirac equations for spinor fields. They are first order differential equations and we show how to adapt to them the canonical formalism. We end with the Proca and Maxwell equations for massive and massless spin-one fields and, in each case, we determine the physical degrees of freedom.","PeriodicalId":285777,"journal":{"name":"Elementary Particle Physics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic Wave Equations\",\"authors\":\"J. Iliopoulos, T. Tomaras\",\"doi\":\"10.1093/oso/9780198788393.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the most general relativistically covariant linear differential equations, having at most two derivatives, for scalar, spinor and vector fields. We introduce the corresponding Lagrangian and Hamiltonian formalisms and present the expansion of the solutions in terms of plane waves. In each case, we study the propagation properties of the corresponding Green functions. We start with the simplest example of the Klein–Gordon equation for a real field and generalise it to that of N real, or complex fields. As a next step we derive the Weyl, Majorana and Dirac equations for spinor fields. They are first order differential equations and we show how to adapt to them the canonical formalism. We end with the Proca and Maxwell equations for massive and massless spin-one fields and, in each case, we determine the physical degrees of freedom.\",\"PeriodicalId\":285777,\"journal\":{\"name\":\"Elementary Particle Physics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementary Particle Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198788393.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementary Particle Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198788393.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于标量场、旋量场和向量场,我们导出了最广义的协变线性微分方程,最多有两个导数。我们引入了相应的拉格朗日和哈密顿形式,并给出了平面波形式下解的展开式。在每种情况下,我们都研究了相应格林函数的传播特性。我们从最简单的实域克莱因-戈登方程的例子开始,并将其推广到N个实域或复域。下一步,我们推导了旋量场的Weyl、Majorana和Dirac方程。它们是一阶微分方程我们展示了如何用标准形式来适应它们。我们以Proca和Maxwell方程来结束有质量和无质量自旋一场,在每种情况下,我们都确定了物理自由度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativistic Wave Equations
We derive the most general relativistically covariant linear differential equations, having at most two derivatives, for scalar, spinor and vector fields. We introduce the corresponding Lagrangian and Hamiltonian formalisms and present the expansion of the solutions in terms of plane waves. In each case, we study the propagation properties of the corresponding Green functions. We start with the simplest example of the Klein–Gordon equation for a real field and generalise it to that of N real, or complex fields. As a next step we derive the Weyl, Majorana and Dirac equations for spinor fields. They are first order differential equations and we show how to adapt to them the canonical formalism. We end with the Proca and Maxwell equations for massive and massless spin-one fields and, in each case, we determine the physical degrees of freedom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信