自适应交互式多模型(SLAIMM)跟踪的监督学习

Erik Blasch
{"title":"自适应交互式多模型(SLAIMM)跟踪的监督学习","authors":"Erik Blasch","doi":"10.1109/NAECON.2009.5426622","DOIUrl":null,"url":null,"abstract":"To improve target tracking algorithms, supervised learning of adaptive interacting multiple model (SLAIMM) is compared to other interacting multiple model (IMM) methods. Based on the classical IMM tracking, a trained adaptive acceleration model is added to the filter bank to track behavior between the fixed model dynamics. The results show that the SLAIMM algorithm 1) improves kinematic track accuracy for a target undergoing acceleration, 2) affords track maintenance through maneuvers, and 3) reduces computational costs by performing off-line learning of system parameters. The SLAIMM method is compared with the classical IMM, the Munir Adaptive IMM, and the Maybeck Moving-Bank multiple-model adaptive estimator (MBMMAE).","PeriodicalId":305765,"journal":{"name":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supervised learning for adaptive interactive multiple model (SLAIMM) tracking\",\"authors\":\"Erik Blasch\",\"doi\":\"10.1109/NAECON.2009.5426622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve target tracking algorithms, supervised learning of adaptive interacting multiple model (SLAIMM) is compared to other interacting multiple model (IMM) methods. Based on the classical IMM tracking, a trained adaptive acceleration model is added to the filter bank to track behavior between the fixed model dynamics. The results show that the SLAIMM algorithm 1) improves kinematic track accuracy for a target undergoing acceleration, 2) affords track maintenance through maneuvers, and 3) reduces computational costs by performing off-line learning of system parameters. The SLAIMM method is compared with the classical IMM, the Munir Adaptive IMM, and the Maybeck Moving-Bank multiple-model adaptive estimator (MBMMAE).\",\"PeriodicalId\":305765,\"journal\":{\"name\":\"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2009.5426622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2009.5426622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了改进目标跟踪算法,将自适应交互多模型(SLAIMM)的监督学习方法与其他交互多模型(IMM)方法进行了比较。在经典IMM跟踪的基础上,在滤波器组中加入训练好的自适应加速度模型来跟踪固定模型动态之间的行为。结果表明,SLAIMM算法1)提高了加速目标的运动轨迹精度,2)通过机动实现轨迹维护,3)通过离线学习系统参数降低了计算成本。将SLAIMM方法与经典IMM、Munir自适应IMM和Maybeck Moving-Bank多模型自适应估计(MBMMAE)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised learning for adaptive interactive multiple model (SLAIMM) tracking
To improve target tracking algorithms, supervised learning of adaptive interacting multiple model (SLAIMM) is compared to other interacting multiple model (IMM) methods. Based on the classical IMM tracking, a trained adaptive acceleration model is added to the filter bank to track behavior between the fixed model dynamics. The results show that the SLAIMM algorithm 1) improves kinematic track accuracy for a target undergoing acceleration, 2) affords track maintenance through maneuvers, and 3) reduces computational costs by performing off-line learning of system parameters. The SLAIMM method is compared with the classical IMM, the Munir Adaptive IMM, and the Maybeck Moving-Bank multiple-model adaptive estimator (MBMMAE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信