{"title":"自适应交互式多模型(SLAIMM)跟踪的监督学习","authors":"Erik Blasch","doi":"10.1109/NAECON.2009.5426622","DOIUrl":null,"url":null,"abstract":"To improve target tracking algorithms, supervised learning of adaptive interacting multiple model (SLAIMM) is compared to other interacting multiple model (IMM) methods. Based on the classical IMM tracking, a trained adaptive acceleration model is added to the filter bank to track behavior between the fixed model dynamics. The results show that the SLAIMM algorithm 1) improves kinematic track accuracy for a target undergoing acceleration, 2) affords track maintenance through maneuvers, and 3) reduces computational costs by performing off-line learning of system parameters. The SLAIMM method is compared with the classical IMM, the Munir Adaptive IMM, and the Maybeck Moving-Bank multiple-model adaptive estimator (MBMMAE).","PeriodicalId":305765,"journal":{"name":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supervised learning for adaptive interactive multiple model (SLAIMM) tracking\",\"authors\":\"Erik Blasch\",\"doi\":\"10.1109/NAECON.2009.5426622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve target tracking algorithms, supervised learning of adaptive interacting multiple model (SLAIMM) is compared to other interacting multiple model (IMM) methods. Based on the classical IMM tracking, a trained adaptive acceleration model is added to the filter bank to track behavior between the fixed model dynamics. The results show that the SLAIMM algorithm 1) improves kinematic track accuracy for a target undergoing acceleration, 2) affords track maintenance through maneuvers, and 3) reduces computational costs by performing off-line learning of system parameters. The SLAIMM method is compared with the classical IMM, the Munir Adaptive IMM, and the Maybeck Moving-Bank multiple-model adaptive estimator (MBMMAE).\",\"PeriodicalId\":305765,\"journal\":{\"name\":\"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2009.5426622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2009.5426622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supervised learning for adaptive interactive multiple model (SLAIMM) tracking
To improve target tracking algorithms, supervised learning of adaptive interacting multiple model (SLAIMM) is compared to other interacting multiple model (IMM) methods. Based on the classical IMM tracking, a trained adaptive acceleration model is added to the filter bank to track behavior between the fixed model dynamics. The results show that the SLAIMM algorithm 1) improves kinematic track accuracy for a target undergoing acceleration, 2) affords track maintenance through maneuvers, and 3) reduces computational costs by performing off-line learning of system parameters. The SLAIMM method is compared with the classical IMM, the Munir Adaptive IMM, and the Maybeck Moving-Bank multiple-model adaptive estimator (MBMMAE).