HOM问题是EXPTIME-Complete

Carles Creus, Adrià Gascón, Guillem Godoy, Lander Ramos
{"title":"HOM问题是EXPTIME-Complete","authors":"Carles Creus, Adrià Gascón, Guillem Godoy, Lander Ramos","doi":"10.1109/LICS.2012.36","DOIUrl":null,"url":null,"abstract":"The HOM problem questions whether the image of a given regular tree language through a given tree homomorphism is also regular. Decidability of HOM is an important theoretical question which was open for a long time. Recently, HOM has been proved decidable with a triple exponential time algorithm. In this paper we obtain an exponential time algorithm for this problem, and conclude that it is EXPTIME-complete. The proof builds upon previous results and techniques on tree automata with constraints.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The HOM Problem is EXPTIME-Complete\",\"authors\":\"Carles Creus, Adrià Gascón, Guillem Godoy, Lander Ramos\",\"doi\":\"10.1109/LICS.2012.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The HOM problem questions whether the image of a given regular tree language through a given tree homomorphism is also regular. Decidability of HOM is an important theoretical question which was open for a long time. Recently, HOM has been proved decidable with a triple exponential time algorithm. In this paper we obtain an exponential time algorithm for this problem, and conclude that it is EXPTIME-complete. The proof builds upon previous results and techniques on tree automata with constraints.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

HOM问题的问题是给定正则树语言通过给定树同态的象是否也是正则的。HOM的可判定性是一个长期悬而未决的重要理论问题。最近,用三指数时间算法证明了HOM是可判定的。本文给出了该问题的指数时间算法,并证明了该算法是exptime完备的。这个证明是建立在先前关于约束树自动机的结果和技术之上的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The HOM Problem is EXPTIME-Complete
The HOM problem questions whether the image of a given regular tree language through a given tree homomorphism is also regular. Decidability of HOM is an important theoretical question which was open for a long time. Recently, HOM has been proved decidable with a triple exponential time algorithm. In this paper we obtain an exponential time algorithm for this problem, and conclude that it is EXPTIME-complete. The proof builds upon previous results and techniques on tree automata with constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信