基于单电极脑机接口的词袋法人类情绪分类

Ljiljana Šerić, Pero Bogunovic
{"title":"基于单电极脑机接口的词袋法人类情绪分类","authors":"Ljiljana Šerić, Pero Bogunovic","doi":"10.23919/SOFTCOM.2017.8115544","DOIUrl":null,"url":null,"abstract":"In this paper we present a human emotions classification technique based on EEG signals from single electrode. We designed an EEG experiment in which we collected training data. Applying the Daubechies 8 wavelet (db8) delta, theta, alpha, beta and gamma wave signal are obtained by decomposition and used as codewords for Bag-of-Words model. We represented each signal with its codewords histogram and implemented classifier base on minimum distance. Results show that EEG signals induced watching horror and relaxing video clips can be classified with average classification rate of 75% using minimum distance classifier.","PeriodicalId":189860,"journal":{"name":"2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Human emotions classification using bag-of-words method on single electrode brain computer interface\",\"authors\":\"Ljiljana Šerić, Pero Bogunovic\",\"doi\":\"10.23919/SOFTCOM.2017.8115544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a human emotions classification technique based on EEG signals from single electrode. We designed an EEG experiment in which we collected training data. Applying the Daubechies 8 wavelet (db8) delta, theta, alpha, beta and gamma wave signal are obtained by decomposition and used as codewords for Bag-of-Words model. We represented each signal with its codewords histogram and implemented classifier base on minimum distance. Results show that EEG signals induced watching horror and relaxing video clips can be classified with average classification rate of 75% using minimum distance classifier.\",\"PeriodicalId\":189860,\"journal\":{\"name\":\"2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SOFTCOM.2017.8115544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SOFTCOM.2017.8115544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于单电极脑电信号的人类情绪分类技术。我们设计了一个EEG实验,收集训练数据。利用Daubechies 8小波(db8)对δ、θ、α、β和γ波信号进行分解,作为Bag-of-Words模型的码字。我们用码字直方图表示每个信号,并基于最小距离实现分类器。结果表明,使用最小距离分类器对观看恐怖视频和放松视频诱发的脑电信号进行分类,平均分类率为75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human emotions classification using bag-of-words method on single electrode brain computer interface
In this paper we present a human emotions classification technique based on EEG signals from single electrode. We designed an EEG experiment in which we collected training data. Applying the Daubechies 8 wavelet (db8) delta, theta, alpha, beta and gamma wave signal are obtained by decomposition and used as codewords for Bag-of-Words model. We represented each signal with its codewords histogram and implemented classifier base on minimum distance. Results show that EEG signals induced watching horror and relaxing video clips can be classified with average classification rate of 75% using minimum distance classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信