{"title":"基于人工智能的无线局域网竞争窗口控制框架","authors":"A. Y. Abyaneh, Mohammed Hirzallah, M. Krunz","doi":"10.1109/DySPAN.2019.8935851","DOIUrl":null,"url":null,"abstract":"The heterogeneity of technologies that operate over the unlicensed 5 GHz spectrum, such as LTE-Licensed-Assisted-Access (LAA), 5G New Radio Unlicensed (NR-U), and WiFi, calls for more intelligent and efficient techniques to coordinate channel access beyond what current standards offer. Wi-Fi standards require nodes to adopt a fixed value for the minimum contention window (CW$_{min})$, which prohibits a node from reacting to aggressive nodes that set their CWmin to small values. To address this problem, we propose a framework called Intelligent-CW (ICW) that allows nodes to adapt their CWmin values based on observed transmissions, ensuring they receive their fair share of the channel airtime. The CWmin value at a node is set based on a random forest, a machine learning model that includes a large number of decision trees. We train the random forest in a supervised manner over a large number of WLAN scenarios, including different misbehaving and aggressive scenarios. Under aggressive scenarios, our simulation results reveal that ICW provides nodes with higher throughput $(153.9$% gain) and 64% lower frame latency than standard techniques. In order to measure the fairness contribution of individual nodes, we introduce a new fairness metric. Based on this metric, ICW is shown to provide $10. 89 \\times $ improvement in fairness in aggressive scenarios compared to standard techniques.","PeriodicalId":278172,"journal":{"name":"2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Intelligent-CW: AI-based Framework for Controlling Contention Window in WLANs\",\"authors\":\"A. Y. Abyaneh, Mohammed Hirzallah, M. Krunz\",\"doi\":\"10.1109/DySPAN.2019.8935851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heterogeneity of technologies that operate over the unlicensed 5 GHz spectrum, such as LTE-Licensed-Assisted-Access (LAA), 5G New Radio Unlicensed (NR-U), and WiFi, calls for more intelligent and efficient techniques to coordinate channel access beyond what current standards offer. Wi-Fi standards require nodes to adopt a fixed value for the minimum contention window (CW$_{min})$, which prohibits a node from reacting to aggressive nodes that set their CWmin to small values. To address this problem, we propose a framework called Intelligent-CW (ICW) that allows nodes to adapt their CWmin values based on observed transmissions, ensuring they receive their fair share of the channel airtime. The CWmin value at a node is set based on a random forest, a machine learning model that includes a large number of decision trees. We train the random forest in a supervised manner over a large number of WLAN scenarios, including different misbehaving and aggressive scenarios. Under aggressive scenarios, our simulation results reveal that ICW provides nodes with higher throughput $(153.9$% gain) and 64% lower frame latency than standard techniques. In order to measure the fairness contribution of individual nodes, we introduce a new fairness metric. Based on this metric, ICW is shown to provide $10. 89 \\\\times $ improvement in fairness in aggressive scenarios compared to standard techniques.\",\"PeriodicalId\":278172,\"journal\":{\"name\":\"2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DySPAN.2019.8935851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2019.8935851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intelligent-CW: AI-based Framework for Controlling Contention Window in WLANs
The heterogeneity of technologies that operate over the unlicensed 5 GHz spectrum, such as LTE-Licensed-Assisted-Access (LAA), 5G New Radio Unlicensed (NR-U), and WiFi, calls for more intelligent and efficient techniques to coordinate channel access beyond what current standards offer. Wi-Fi standards require nodes to adopt a fixed value for the minimum contention window (CW$_{min})$, which prohibits a node from reacting to aggressive nodes that set their CWmin to small values. To address this problem, we propose a framework called Intelligent-CW (ICW) that allows nodes to adapt their CWmin values based on observed transmissions, ensuring they receive their fair share of the channel airtime. The CWmin value at a node is set based on a random forest, a machine learning model that includes a large number of decision trees. We train the random forest in a supervised manner over a large number of WLAN scenarios, including different misbehaving and aggressive scenarios. Under aggressive scenarios, our simulation results reveal that ICW provides nodes with higher throughput $(153.9$% gain) and 64% lower frame latency than standard techniques. In order to measure the fairness contribution of individual nodes, we introduce a new fairness metric. Based on this metric, ICW is shown to provide $10. 89 \times $ improvement in fairness in aggressive scenarios compared to standard techniques.