语音特征与人工神经网络诊断帕金森病患者

R. Islam, E. Abdel-Raheem, M. Tarique
{"title":"语音特征与人工神经网络诊断帕金森病患者","authors":"R. Islam, E. Abdel-Raheem, M. Tarique","doi":"10.1109/ICECTA57148.2022.9990334","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to detect Parkinson’s disease using voiced features and an artificial neural network (ANN). It uses 44 audio features extracted from the sustained vowel’/a/’ sound of the Parkinson’s disease patients and healthy subjects. To fully characterize a healthy and a Parkinson’s patient’s voice, audio features of different domains have been investigated. A simple two-layer feed-forward neural network (FFNN) has been deployed to avoid an overwhelming computational burden on the system. Significant statistical parameters are measured to evaluate the performance of the proposed algorithm. The simulation results show that the proposed algorithm achieves an accuracy of 85% and G-mean of 85.19% in identifying Parkinson’s patients.","PeriodicalId":337798,"journal":{"name":"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Voiced Features and Artificial Neural Network to Diagnose Parkinson’s Disease Patients\",\"authors\":\"R. Islam, E. Abdel-Raheem, M. Tarique\",\"doi\":\"10.1109/ICECTA57148.2022.9990334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm to detect Parkinson’s disease using voiced features and an artificial neural network (ANN). It uses 44 audio features extracted from the sustained vowel’/a/’ sound of the Parkinson’s disease patients and healthy subjects. To fully characterize a healthy and a Parkinson’s patient’s voice, audio features of different domains have been investigated. A simple two-layer feed-forward neural network (FFNN) has been deployed to avoid an overwhelming computational burden on the system. Significant statistical parameters are measured to evaluate the performance of the proposed algorithm. The simulation results show that the proposed algorithm achieves an accuracy of 85% and G-mean of 85.19% in identifying Parkinson’s patients.\",\"PeriodicalId\":337798,\"journal\":{\"name\":\"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECTA57148.2022.9990334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTA57148.2022.9990334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于语音特征和人工神经网络(ANN)的帕金森病检测算法。它使用了从帕金森病患者和健康受试者的持续元音“/a/”音中提取的44个音频特征。为了充分表征健康和帕金森患者的声音,研究了不同域的音频特征。采用一种简单的两层前馈神经网络(FFNN)来避免系统的巨大计算负担。通过测量重要的统计参数来评估所提出算法的性能。仿真结果表明,该算法识别帕金森病患者的准确率为85%,g均值为85.19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voiced Features and Artificial Neural Network to Diagnose Parkinson’s Disease Patients
This paper presents an algorithm to detect Parkinson’s disease using voiced features and an artificial neural network (ANN). It uses 44 audio features extracted from the sustained vowel’/a/’ sound of the Parkinson’s disease patients and healthy subjects. To fully characterize a healthy and a Parkinson’s patient’s voice, audio features of different domains have been investigated. A simple two-layer feed-forward neural network (FFNN) has been deployed to avoid an overwhelming computational burden on the system. Significant statistical parameters are measured to evaluate the performance of the proposed algorithm. The simulation results show that the proposed algorithm achieves an accuracy of 85% and G-mean of 85.19% in identifying Parkinson’s patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信