具有混沌动力学的竞争hopfield神经网络用于分区聚类问题

Gang Yang, Junyan Yi, Jieping Xu, Xirong Li
{"title":"具有混沌动力学的竞争hopfield神经网络用于分区聚类问题","authors":"Gang Yang, Junyan Yi, Jieping Xu, Xirong Li","doi":"10.1109/ICSSSM.2015.7170167","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm, named CCHN, is proposed to solve the partitional clustering problem. An outer chaotic mechanism with annealing strategy is introduced into the competitive Hopfield neural network to construct CCHN for expecting better opportunities of converging to the optimal solution. In addition to retain the competitive characteristics of the conventional competitive Hopfield neural network, CCHN displays a rich range of complex and flexible chaotic dynamics. The chaotic dynamics and the annealing strategy guarantee the powerful searching ability and the effective convergence of CCHN. Results simulated on clustering benchmark problems show that CCHN algorithm is more likely to find an optimal or near-optimal solution with a higher successful ratio than previous algorithms.","PeriodicalId":211783,"journal":{"name":"2015 12th International Conference on Service Systems and Service Management (ICSSSM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive hopfield neural network with chaotic dynamics for partitional clustering problem\",\"authors\":\"Gang Yang, Junyan Yi, Jieping Xu, Xirong Li\",\"doi\":\"10.1109/ICSSSM.2015.7170167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an algorithm, named CCHN, is proposed to solve the partitional clustering problem. An outer chaotic mechanism with annealing strategy is introduced into the competitive Hopfield neural network to construct CCHN for expecting better opportunities of converging to the optimal solution. In addition to retain the competitive characteristics of the conventional competitive Hopfield neural network, CCHN displays a rich range of complex and flexible chaotic dynamics. The chaotic dynamics and the annealing strategy guarantee the powerful searching ability and the effective convergence of CCHN. Results simulated on clustering benchmark problems show that CCHN algorithm is more likely to find an optimal or near-optimal solution with a higher successful ratio than previous algorithms.\",\"PeriodicalId\":211783,\"journal\":{\"name\":\"2015 12th International Conference on Service Systems and Service Management (ICSSSM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 12th International Conference on Service Systems and Service Management (ICSSSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSSM.2015.7170167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Conference on Service Systems and Service Management (ICSSSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2015.7170167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解分区聚类问题的CCHN算法。在竞争Hopfield神经网络中引入带退火策略的外部混沌机制来构造CCHN,以期有更好的收敛机会。CCHN除了保留传统竞争Hopfield神经网络的竞争特征外,还表现出丰富的复杂和灵活的混沌动力学。混沌动力学和退火策略保证了CCHN强大的搜索能力和有效的收敛性。在聚类基准问题上的模拟结果表明,CCHN算法比以前的算法更容易找到最优或近最优解,成功率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Competitive hopfield neural network with chaotic dynamics for partitional clustering problem
In this paper, an algorithm, named CCHN, is proposed to solve the partitional clustering problem. An outer chaotic mechanism with annealing strategy is introduced into the competitive Hopfield neural network to construct CCHN for expecting better opportunities of converging to the optimal solution. In addition to retain the competitive characteristics of the conventional competitive Hopfield neural network, CCHN displays a rich range of complex and flexible chaotic dynamics. The chaotic dynamics and the annealing strategy guarantee the powerful searching ability and the effective convergence of CCHN. Results simulated on clustering benchmark problems show that CCHN algorithm is more likely to find an optimal or near-optimal solution with a higher successful ratio than previous algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信