低成本自动环境辅助生活系统

H. Malekmohamadi, Armaghan Moemeni, A. Orun, J. Purohit
{"title":"低成本自动环境辅助生活系统","authors":"H. Malekmohamadi, Armaghan Moemeni, A. Orun, J. Purohit","doi":"10.1109/PERCOMW.2018.8480390","DOIUrl":null,"url":null,"abstract":"The recent increase in ageing population in countries around the world has brought a lot of attention toward research and development of ambient assisted living (AAL) systems. These systems should be inexpensive to be installed in elderly homes, protecting their privacy and more importantly being non-invasive and smart. In this paper, we introduce an inexpensive system that utilises off-the-shelf sensor to grab RGB-D data. This data is then fed into different learning algorithms for classification different activity types. We achieve a very good success rate (99.9%) for human activity recognition (HAR) with the help of light-weighted and fast random forests (RF).","PeriodicalId":190096,"journal":{"name":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Low-Cost Automatic Ambient Assisted Living System\",\"authors\":\"H. Malekmohamadi, Armaghan Moemeni, A. Orun, J. Purohit\",\"doi\":\"10.1109/PERCOMW.2018.8480390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent increase in ageing population in countries around the world has brought a lot of attention toward research and development of ambient assisted living (AAL) systems. These systems should be inexpensive to be installed in elderly homes, protecting their privacy and more importantly being non-invasive and smart. In this paper, we introduce an inexpensive system that utilises off-the-shelf sensor to grab RGB-D data. This data is then fed into different learning algorithms for classification different activity types. We achieve a very good success rate (99.9%) for human activity recognition (HAR) with the help of light-weighted and fast random forests (RF).\",\"PeriodicalId\":190096,\"journal\":{\"name\":\"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2018.8480390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2018.8480390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

近年来,随着世界各国人口老龄化的加剧,环境辅助生活(AAL)系统的研究与开发受到了广泛关注。这些系统应该安装在老年人家中,价格低廉,保护他们的隐私,更重要的是非侵入性和智能。在本文中,我们介绍了一个廉价的系统,利用现成的传感器来获取RGB-D数据。然后将这些数据输入到不同的学习算法中,用于对不同的活动类型进行分类。在轻量级快速随机森林(RF)的帮助下,我们实现了非常好的人类活动识别(HAR)成功率(99.9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Cost Automatic Ambient Assisted Living System
The recent increase in ageing population in countries around the world has brought a lot of attention toward research and development of ambient assisted living (AAL) systems. These systems should be inexpensive to be installed in elderly homes, protecting their privacy and more importantly being non-invasive and smart. In this paper, we introduce an inexpensive system that utilises off-the-shelf sensor to grab RGB-D data. This data is then fed into different learning algorithms for classification different activity types. We achieve a very good success rate (99.9%) for human activity recognition (HAR) with the help of light-weighted and fast random forests (RF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信