{"title":"不使用查询日志的概率查询建议方法","authors":"M. T. Shaikh, M. S. Pera, Yiu-Kai Ng","doi":"10.1109/ICTAI.2013.99","DOIUrl":null,"url":null,"abstract":"Commercial web search engines include a query suggestion module so that given a user's keyword query, alternative suggestions are offered and served as a guide to assist the user in formulating queries which capture his/her intended information need in a quick and simple manner. Majorityof these modules, however, perform an in-depth analysis oflarge query logs and thus (i) their suggestions are mostlybased on queries frequently posted by users and (ii) theirdesign methodologies cannot be applied to make suggestions oncustomized search applications for enterprises for which theirrespective query logs are not large enough or non-existent. To address these design issues, we have developed PQS, aprobabilistic query suggestion module. Unlike its counterparts, PQS is not constrained by the existence of query logs, sinceit solely relies on the availability of user-generated contentfreely accessible online, such as the Wikipedia.org documentcollection, and applies simple, yet effective, probabilistic-andinformation retrieval-based models, i.e., the Multinomial, BigramLanguage, and Vector Space Models, to provide usefuland diverse query suggestions. Empirical studies conductedusing a set of test queries and the feedbacks provided byMechanical Turk appraisers have verified that PQS makesmore useful suggestions than Yahoo! and is almost as goodas Google and Bing based on the relatively small difference inperformance measures achieved by Google and Bing over PQS.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Probabilistic Query Suggestion Approach without Using Query Logs\",\"authors\":\"M. T. Shaikh, M. S. Pera, Yiu-Kai Ng\",\"doi\":\"10.1109/ICTAI.2013.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial web search engines include a query suggestion module so that given a user's keyword query, alternative suggestions are offered and served as a guide to assist the user in formulating queries which capture his/her intended information need in a quick and simple manner. Majorityof these modules, however, perform an in-depth analysis oflarge query logs and thus (i) their suggestions are mostlybased on queries frequently posted by users and (ii) theirdesign methodologies cannot be applied to make suggestions oncustomized search applications for enterprises for which theirrespective query logs are not large enough or non-existent. To address these design issues, we have developed PQS, aprobabilistic query suggestion module. Unlike its counterparts, PQS is not constrained by the existence of query logs, sinceit solely relies on the availability of user-generated contentfreely accessible online, such as the Wikipedia.org documentcollection, and applies simple, yet effective, probabilistic-andinformation retrieval-based models, i.e., the Multinomial, BigramLanguage, and Vector Space Models, to provide usefuland diverse query suggestions. Empirical studies conductedusing a set of test queries and the feedbacks provided byMechanical Turk appraisers have verified that PQS makesmore useful suggestions than Yahoo! and is almost as goodas Google and Bing based on the relatively small difference inperformance measures achieved by Google and Bing over PQS.\",\"PeriodicalId\":140309,\"journal\":{\"name\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2013.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Probabilistic Query Suggestion Approach without Using Query Logs
Commercial web search engines include a query suggestion module so that given a user's keyword query, alternative suggestions are offered and served as a guide to assist the user in formulating queries which capture his/her intended information need in a quick and simple manner. Majorityof these modules, however, perform an in-depth analysis oflarge query logs and thus (i) their suggestions are mostlybased on queries frequently posted by users and (ii) theirdesign methodologies cannot be applied to make suggestions oncustomized search applications for enterprises for which theirrespective query logs are not large enough or non-existent. To address these design issues, we have developed PQS, aprobabilistic query suggestion module. Unlike its counterparts, PQS is not constrained by the existence of query logs, sinceit solely relies on the availability of user-generated contentfreely accessible online, such as the Wikipedia.org documentcollection, and applies simple, yet effective, probabilistic-andinformation retrieval-based models, i.e., the Multinomial, BigramLanguage, and Vector Space Models, to provide usefuland diverse query suggestions. Empirical studies conductedusing a set of test queries and the feedbacks provided byMechanical Turk appraisers have verified that PQS makesmore useful suggestions than Yahoo! and is almost as goodas Google and Bing based on the relatively small difference inperformance measures achieved by Google and Bing over PQS.