基于球面波分解的近场MIMO阵列成像算法

Rongqiang Zhu, Jianxiong Zhou, Q. Fu
{"title":"基于球面波分解的近场MIMO阵列成像算法","authors":"Rongqiang Zhu, Jianxiong Zhou, Q. Fu","doi":"10.1109/RADAR.2016.8059158","DOIUrl":null,"url":null,"abstract":"Multiple-input-multiple-output (MIMO) array imaging is more challenging than the monostatic configuration because the incident and reflected path are different. In FFT-based MIMO array imaging algorithms, rearrangement in wavenumber domain to reduce dimension is implemented which has low efficiency and restricts the sampling steps in spatial frequencies. This paper proposes a novel wavenumber domain imaging algorithm based on spherical wave decomposition. This algorithm uses FFT to transform the measurements into wavenumber domain for compensation, and then the spectrum is retransformed to reconstruct image by FFT and coherent accumulation. It avoids the rearrangement operation and preserves the high efficiency of the FFT-based method, and can be implemented for transmitting and receiving arrays of different length. The imaging performance is demonstrated by simulation.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near field MIMO array imaging algorithm based on spherical wave decomposition\",\"authors\":\"Rongqiang Zhu, Jianxiong Zhou, Q. Fu\",\"doi\":\"10.1109/RADAR.2016.8059158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple-input-multiple-output (MIMO) array imaging is more challenging than the monostatic configuration because the incident and reflected path are different. In FFT-based MIMO array imaging algorithms, rearrangement in wavenumber domain to reduce dimension is implemented which has low efficiency and restricts the sampling steps in spatial frequencies. This paper proposes a novel wavenumber domain imaging algorithm based on spherical wave decomposition. This algorithm uses FFT to transform the measurements into wavenumber domain for compensation, and then the spectrum is retransformed to reconstruct image by FFT and coherent accumulation. It avoids the rearrangement operation and preserves the high efficiency of the FFT-based method, and can be implemented for transmitting and receiving arrays of different length. The imaging performance is demonstrated by simulation.\",\"PeriodicalId\":245387,\"journal\":{\"name\":\"2016 CIE International Conference on Radar (RADAR)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 CIE International Conference on Radar (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2016.8059158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于入射和反射路径不同,多输入多输出(MIMO)阵列成像比单站成像更具挑战性。在基于fft的MIMO阵列成像算法中,为了降低维数而在波数域进行重排是一种效率较低且限制了空间频率采样步数的算法。提出了一种基于球面波分解的波数域成像算法。该算法首先利用FFT将测量值转换到波数域进行补偿,然后利用FFT和相干积累对频谱进行重变换重建图像。它避免了重排运算,保留了基于fft方法的高效率,可以实现不同长度的发送和接收阵列。仿真验证了该方法的成像性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near field MIMO array imaging algorithm based on spherical wave decomposition
Multiple-input-multiple-output (MIMO) array imaging is more challenging than the monostatic configuration because the incident and reflected path are different. In FFT-based MIMO array imaging algorithms, rearrangement in wavenumber domain to reduce dimension is implemented which has low efficiency and restricts the sampling steps in spatial frequencies. This paper proposes a novel wavenumber domain imaging algorithm based on spherical wave decomposition. This algorithm uses FFT to transform the measurements into wavenumber domain for compensation, and then the spectrum is retransformed to reconstruct image by FFT and coherent accumulation. It avoids the rearrangement operation and preserves the high efficiency of the FFT-based method, and can be implemented for transmitting and receiving arrays of different length. The imaging performance is demonstrated by simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信